ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture - Archive ouverte HAL
Article Dans Une Revue GigaScience Année : 2021

ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture

Résumé

Background: Deep learning methods have outperformed previous techniques in most computer vision tasks, including image-based plant phenotyping. However, massive data collection of root traits and the development of associated artificial intelligence approaches have been hampered by the inaccessibility of the rhizosphere. Here we present ChronoRoot, a system that combines 3D-printed open-hardware with deep segmentation networks for high temporal resolution phenotyping of plant roots in agarized medium. Results: We developed a novel deep learning-based root extraction method that leverages the latest advances in convolutional neural networks for image segmentation and incorporates temporal consistency into the root system architecture reconstruction process. Automatic extraction of phenotypic parameters from sequences of images allowed a comprehensive characterization of the root system growth dynamics. Furthermore, novel time-associated parameters emerged from the analysis of spectral features derived from temporal signals. Conclusions: Our work shows that the combination of machine intelligence methods and a 3D-printed device expands the possibilities of root high-throughput phenotyping for genetics and natural variation studies, as well as the screening of clock-related mutants, revealing novel root traits.
Fichier principal
Vignette du fichier
giab052.pdf (4.61 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03324566 , version 1 (23-08-2021)

Identifiants

Citer

Nicolás Gaggion, Federico Ariel, Vladimir Daric, Eric Lambert, Simon Legendre, et al.. ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture. GigaScience, 2021, 10 (7), pp.giab052. ⟨10.1093/gigascience/giab052⟩. ⟨hal-03324566⟩
83 Consultations
104 Téléchargements

Altmetric

Partager

More