THE POROUS MEDIUM EQUATION AS A SINGULAR LIMIT OF THE THIN FILM MUSKAT PROBLEM - Archive ouverte HAL
Article Dans Une Revue Asymptotic Analysis Année : 2023

THE POROUS MEDIUM EQUATION AS A SINGULAR LIMIT OF THE THIN FILM MUSKAT PROBLEM

Bogdan-Vasile Matioc
  • Fonction : Auteur
  • PersonId : 1107818

Résumé

The singular limit of the thin film Muskat problem is performed when the density (and possibly the viscosity) of the lighter fluid vanishes and the porous medium equation is identified as the limit problem. In particular, the height of the denser fluid is shown to converge towards the solution to the porous medium equation and an explicit rate for this convergence is provided in space dimension d ≤ 4. Moreover, the limit of the height of the lighter fluid is determined in a certain regime and is given by the corresponding initial condition.
Fichier principal
Vignette du fichier
Version2021.08.17.pdf (259.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03322483 , version 1 (19-08-2021)

Identifiants

Citer

Philippe Laurençot, Bogdan-Vasile Matioc. THE POROUS MEDIUM EQUATION AS A SINGULAR LIMIT OF THE THIN FILM MUSKAT PROBLEM. Asymptotic Analysis, 2023, 131, pp.255--271. ⟨10.3233/ASY-221774⟩. ⟨hal-03322483⟩
33 Consultations
61 Téléchargements

Altmetric

Partager

More