Reconstruction, analysis and interpretation of posterior probability distributions of PET images, using the posterior bootstrap - Archive ouverte HAL
Article Dans Une Revue Physics in Medicine and Biology Année : 2021

Reconstruction, analysis and interpretation of posterior probability distributions of PET images, using the posterior bootstrap

Résumé

The uncertainty of reconstructed PET images remains difficult to assess and to interpret for the use in diagnostic and quantification tasks. Here we provide (1) an easy-to-use methodology for uncertainty assessment for almost any Bayesian model in PET reconstruction from single datasets and (2) a detailed analysis and interpretation of produced posterior image distributions. We apply a recent posterior bootstrap framework to the PET image reconstruction inverse problem and obtain simple parallelizable algorithms based on random weights and on existing maximum a posteriori (MAP) (posterior maximum) optimization-based algorithms. Posterior distributions are produced, analyzed and interpreted for several common Bayesian models. Their relationship with the distribution of the MAP image estimate over multiple dataset realizations is exposed. The coverage properties of posterior distributions are validated. More insight is obtained for the interpretation of posterior distributions in order to open the way for including uncertainty information into diagnostic and quantification tasks.
Fichier principal
Vignette du fichier
OpenAccess_MarinaFilipovic_2021_Phys._Med._Biol._66_125018.pdf (3.28 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-03321853 , version 1 (23-08-2021)

Identifiants

Citer

Marina Filipović, Thomas Dautremer, Claude Comtat, Simon Stute, Eric Barat. Reconstruction, analysis and interpretation of posterior probability distributions of PET images, using the posterior bootstrap. Physics in Medicine and Biology, 2021, 66 (12), pp.125018. ⟨10.1088/1361-6560/ac06e1⟩. ⟨hal-03321853⟩
134 Consultations
77 Téléchargements

Altmetric

Partager

More