Unsupervised Reconstruction of Sea Surface Currents from AIS Maritime Traffic Data Using Trainable Variational Models - Archive ouverte HAL
Article Dans Une Revue Remote Sensing Année : 2021

Unsupervised Reconstruction of Sea Surface Currents from AIS Maritime Traffic Data Using Trainable Variational Models

Résumé

The estimation of ocean dynamics is a key challenge for applications ranging from climate modeling to ship routing. State-of-the-art methods relying on satellite-derived altimetry data can hardly resolve spatial scales below ∼100 km. In this work we investigate the relevance of AIS data streams as a new mean for the estimation of the surface current velocities. Using a physics-informed observation model, we propose to solve the associated the ill-posed inverse problem using a trainable variational formulation. The latter exploits variational auto-encoders coupled with neural ODE to represent sea surface dynamics. We report numerical experiments on a real AIS dataset off South Africa in a highly dynamical ocean region. They support the relevance of the proposed learning-based AIS-driven approach to significantly improve the reconstruction of sea surface currents compared with state-of-the-art methods, including altimetry-based ones
Fichier principal
Vignette du fichier
remotesensing-13-03162(1).pdf (1.67 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03319098 , version 1 (11-08-2021)

Licence

Identifiants

Citer

Simon Benaïchouche, Clément Legoff, Yann Guichoux, François Rousseau, Ronan Fablet. Unsupervised Reconstruction of Sea Surface Currents from AIS Maritime Traffic Data Using Trainable Variational Models. Remote Sensing, 2021, 13, ⟨10.3390/rs13163162⟩. ⟨hal-03319098⟩
87 Consultations
158 Téléchargements

Altmetric

Partager

More