Étude de méthodes arborescentes de Monte-Carlo pour un problème de déplacement de pièces dans un atelier d'assemblage - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Étude de méthodes arborescentes de Monte-Carlo pour un problème de déplacement de pièces dans un atelier d'assemblage

Résumé

La recherche arborescente Monte-Carlo (MCTS) connaît un développement important pour la résolution de problèmes d'optimisation combinatoire, en particulier, lorsque les mécanismes d'inférence ne passent pas à l'échelle, ou sont trop faibles pour réduire l'espace de recherche. Dans cet article, nous appliquons la méthode MCTS à un problème de voyageur de commerce avec fenêtres de temps et contraintes de capacité, issu d'une chaîne de montage dans la construction automobile. Des adaptations du MCTS de base sont proposées et analysées via une étude expérimentale afin de dégager des pistes génériques pour la résolution de problème d'optimisation combinatoire.
Fichier principal
Vignette du fichier
RJCIA_2021_paper_18.pdf (210.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03298740 , version 1 (23-07-2021)

Identifiants

  • HAL Id : hal-03298740 , version 1

Citer

Valentin Antuori, Emmanuel Hébrard, Marie-José Huguet, S Essodaigui, A Nguyen. Étude de méthodes arborescentes de Monte-Carlo pour un problème de déplacement de pièces dans un atelier d'assemblage. Rencontres des Jeunes Chercheurs en Intelligence Artificielle (RJCIA'21) Plate-Forme Intelligence Artificielle (PFIA'21), Jul 2021, Bordeaux, France. pp.7-13. ⟨hal-03298740⟩
165 Consultations
358 Téléchargements

Partager

More