Preventing dataset shift from breaking machine-learning biomarkers - Archive ouverte HAL
Article Dans Une Revue GigaScience Année : 2021

Preventing dataset shift from breaking machine-learning biomarkers

Résumé

Machine learning brings the hope of finding new biomarkers extracted from cohorts with rich biomedical measurements. A good biomarker is one that gives reliable detection of the corresponding condition. However, biomarkers are often extracted from a cohort that differs from the target population. Such a mismatch, known as a dataset shift, can undermine the application of the biomarker to new individuals. Dataset shifts are frequent in biomedical research, e.g. because of recruitment biases. When a dataset shift occurs, standard machine-learning techniques do not suffice to extract and validate biomarkers. This article provides an overview of when and how dataset shifts breaks machine-learning extracted biomarkers, as well as detection and correction strategies.
Fichier principal
Vignette du fichier
main.pdf (581.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03293375 , version 1 (20-07-2021)

Identifiants

Citer

Jérôme Dockès, Gaël Varoquaux, Jean-Baptiste Poline. Preventing dataset shift from breaking machine-learning biomarkers. GigaScience, inPress, ⟨10.1093/gigascience/giab055⟩. ⟨hal-03293375⟩
256 Consultations
415 Téléchargements

Altmetric

Partager

More