Weak well-posedness for degenerate SDEs driven by Lévy processes - Archive ouverte HAL
Article Dans Une Revue Stochastic Processes and their Applications Année : 2023

Weak well-posedness for degenerate SDEs driven by Lévy processes

Résumé

In this article, we study the effects of the propagation of a non-degenerate Lévy noise through a chain of deterministic differential equations whose coefficients are Hölder continuous and satisfy a weak Hörmander-like condition. In particular, we assume some non-degeneracy with respect to the components which transmit the noise. Moreover, we characterize, for some specific dynamics, through suitable counterexamples , the almost sharp regularity exponents that ensure the weak well-posedness for the associated SDE. As a by-product of our approach, we also derive some Krylov-ype estimates for the density of the weak solutions of the considered SDE.
Fichier principal
Vignette du fichier
Article.pdf (626.22 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03281998 , version 1 (08-07-2021)

Identifiants

Citer

L Marino, S Menozzi. Weak well-posedness for degenerate SDEs driven by Lévy processes. Stochastic Processes and their Applications, 2023, 162, pp.106-170. ⟨10.1016/j.spa.2023.04.012⟩. ⟨hal-03281998⟩
79 Consultations
63 Téléchargements

Altmetric

Partager

More