Is the Cyanobacterial Bloom Composition Shifting Due to Climate Forcing or Nutrient Changes? Example of a Shallow Eutrophic Reservoir - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Toxins Année : 2021

Is the Cyanobacterial Bloom Composition Shifting Due to Climate Forcing or Nutrient Changes? Example of a Shallow Eutrophic Reservoir

Résumé

Cyanobacterial blooms in eutrophic freshwater is a global threat to the functioning of ecosystems, human health and the economy. Parties responsible for the ecosystems and human health increasingly demand reliable predictions of cyanobacterial development to support necessary decisions. Long-term data series help with identifying environmental drivers of cyanobacterial developments in the context of climatic and anthropogenic pressure. Here, we analyzed 13 years of eutrophication and climatic data of a shallow temperate reservoir showing a high interannual variability of cyanobacterial development and composition, which is a less occurring and/or less described phenomenon compared to recurrant monospecific blooms. While between 2007-2012 Planktothrix agardhii dominated the cyanobacterial community, it shifted towards Microcystis sp. and then Dolichospermum sp. afterwards (2013-2019). The shift to Microcystis sp. dominance was mainly influenced by generally calmer and warmer conditions. The later shift to Dolichospermum sp. was driven by droughts influencing, amongst others, the N-load, as P remained unchanged over the time period. Both, climatic pressure and N-limitation contributed to the high variability of cyanobacterial blooms and may lead to a new equilibrium. The further reduction of P-load in parallel to the decreasing N-load is important to suppress cyanobacterial blooms and ameliorate ecosystem health.
Fichier principal
Vignette du fichier
toxins-13-00351-v2.pdf (6.22 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03280338 , version 1 (07-07-2021)

Licence

Paternité

Identifiants

Citer

Morgane Le Moal, A. Pannard, Luc Brient, Benjamin Richard, Marion Chorin, et al.. Is the Cyanobacterial Bloom Composition Shifting Due to Climate Forcing or Nutrient Changes? Example of a Shallow Eutrophic Reservoir. Toxins, 2021, 13 (5), pp.351. ⟨10.3390/toxins13050351⟩. ⟨hal-03280338⟩
43 Consultations
26 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More