Communication Dans Un Congrès Année : 2018

A Fitness Landscape View on the Tuning of an Asynchronous Master-Worker EA for Nuclear Reactor Design

Mathieu Muniglia
  • Fonction : Auteur
Jean-Charles Le Pallec
  • Fonction : Auteur
Jean-Michel Do
  • Fonction : Auteur

Résumé

In the context of the introduction of intermittent renewable energies, we propose to optimize the main variables of the control rods of a nuclear power plant to improve its capability to load-follow. The design problem is a black-box combinatorial optimization problem with expensive evaluation based on a multi-physics simulator. Therefore, we use a parallel asynchronous master-worker Evolutionary Algorithm scaling up to thousand computing units. One main issue is the tuning of the algorithm parameters. A fitness landscape analysis is conducted on this expensive real-world problem to show that it would be possible to tune the mutation parameters according to the low-cost estimation of the fitness landscape features.
Fichier principal
Vignette du fichier
muniglia.pdf (660.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03279555 , version 1 (06-07-2021)

Identifiants

Citer

Mathieu Muniglia, Sébastien Verel, Jean-Charles Le Pallec, Jean-Michel Do. A Fitness Landscape View on the Tuning of an Asynchronous Master-Worker EA for Nuclear Reactor Design. International Conference on Artificial Evolution (Evolution Artificielle), Oct 2017, Paris, France. pp.30-46, ⟨10.1007/978-3-319-78133-4_3⟩. ⟨hal-03279555⟩
36 Consultations
52 Téléchargements

Altmetric

Partager

More