Continuum of earthquake rupture speeds enabled by oblique slip - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Nature Geoscience Année : 2020

Continuum of earthquake rupture speeds enabled by oblique slip

Huihui Weng
Jean-Paul Ampuero

Résumé

Earthquake rupture speed can affect ground shaking and therefore seismic hazard. Seismological observations show that large earthquakes span a continuum of rupture speeds, from slower than Rayleigh waves up to P-wave speed, and include speeds that are predicted to be unstable by two-dimensional theory. This discrepancy between observations and theory has not yet been reconciled by a quantitative model. Here we present numerical simulations that show that long ruptures with oblique slip (both strike-slip and dip-slip components) can propagate steadily at various speeds, including those previously suggested to be unstable. The obliqueness of slip and the ratio of fracture energy to static energy release rate primarily control the propagation speed of long ruptures. We find that the effects of these controls on rupture speed can be predicted by extending the three-dimensional theory of fracture mechanics to long ruptures with oblique slip. This model advances our ability to interpret supershear earthquakes, to constrain the energy ratio of faults based on observed rupture speed and rake angle, and to relate the potential rupture speed and size of future earthquakes to the observed slip deficit along faults.

Dates et versions

hal-03279193 , version 1 (06-07-2021)

Identifiants

Citer

Huihui Weng, Jean-Paul Ampuero. Continuum of earthquake rupture speeds enabled by oblique slip. Nature Geoscience, 2020, 13 (12), pp.817-821. ⟨10.1038/s41561-020-00654-4⟩. ⟨hal-03279193⟩
24 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More