Composition-driven transition from amorphous to crystalline films enables bottom-up design of functional surfaces
Résumé
Composition-driven transition to the crystalline state is characteristic of amorphous metal alloys and is widely observed in thin film. However, the transition zone (compositional range between single-phase amorphous and crystalline films) remains unexplored. Here, we demonstrate that this transition offers an excellent scenario for the fabrication of hybrid crystalline-amorphous architectures. The peculiar morphology of these nano(micro)structured films provides a simple bottom-up route, applicable to a broad range of alloys, for obtaining adjustable multifunctional surfaces. In particular, we prove the feasibility of this approach as a one-step process for a precise control of specular and diffuse reflectance over the visible spectrum. Further, the growth kinetics of the formed two-phase nanostructures is demonstrated equivalent to a 2-dimensional amorphous-to-crystalline phase transformation. Using Zr-W alloys as a model system, fundamental parameters of the growth process and the corresponding metastable thickness-composition phase diagram are extracted. It evidences 2 that the two-phase nanostructures, despite occurring in a wide range of compositions, can be easily hidden experimentally by growth kinetics and nucleation delay. These results open a new avenue on the surface morphology and related functional properties control in thin films.
Origine | Fichiers produits par l'(les) auteur(s) |
---|