TermEval 2020: TALN-LS2N System for Automatic Term Extraction
Résumé
Automatic terminology extraction is a notoriously difficult task aiming to ease effort demanded to manually identify terms in domain-specific corpora by automatically providing a ranked list of candidate terms. The main ways that addressed this task can be ranged in four main categories: (i) rule-based approaches, (ii) feature-based approaches, (iii) context-based approaches, and (iv) hybrid approaches. For this first TermEval shared task, we explore a feature-based approach, and a deep neural network multitask approach-BERT-that we fine-tune for term extraction. We show that BERT models (RoBERTa for English and CamemBERT for French) outperform other systems for French and English languages.
Domaines
Traitement du texte et du documentOrigine | Fichiers éditeurs autorisés sur une archive ouverte |
---|