Fast rotation limit for the 2-D non-homogeneous incompressible Euler equations - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Analysis and Applications Année : 2021

Fast rotation limit for the 2-D non-homogeneous incompressible Euler equations

Résumé

In the present paper, we study the fast rotation limit for the density-dependent incompressible Euler equations in two space dimensions with the presence of the Coriolis force. In the case when the initial densities are small perturbation of a constant profile, we show the convergence of solutions towards the solutions of a quasi-homogeneous incompressible Euler system. The proof relies on a combination of uniform estimates in high regularity norms with a compensated compactness argument for passing to the limit. This technique allows us to treat the case of ill-prepared initial data.
Fichier principal
Vignette du fichier
2106.13699.pdf (472.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Commentaire Ce pdf est la version preprint de l'article (version soumise à l'éditeur, avant peer-reviewing)

Dates et versions

hal-03272157 , version 1 (28-06-2021)

Identifiants

Citer

Gabriele Sbaiz. Fast rotation limit for the 2-D non-homogeneous incompressible Euler equations. Journal of Mathematical Analysis and Applications, 2021, 512 (1), pp.126140. ⟨10.1016/j.jmaa.2022.126140⟩. ⟨hal-03272157⟩

Altmetric

Partager

More