On homology torsion growth - Archive ouverte HAL
Article Dans Une Revue Journal of the European Mathematical Society Année : 2024

On homology torsion growth

Résumé

We prove new vanishing results on the growth of higher torsion homologies for suitable arithmetic lattices, Artin groups and mapping class groups. The growth is understood along Farber sequences, in particular, along residual chains. For principal congruence subgroups, we also obtain strong asymptotic bounds for the torsion growth. As a central tool, we introduce a quantitative homotopical method called effective rebuilding. This constructs small classifying spaces of finite index subgroups, at the same time controlling the complexity of the homotopy. The method easily applies to free abelian groups and then extends recursively to a wide class of residually finite groups.
Fichier principal
Vignette du fichier
ABFG-2022-06-03.pdf (630.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03270482 , version 1 (24-06-2021)
hal-03270482 , version 2 (27-06-2022)

Identifiants

Citer

Miklos Abert, Nicolas Bergeron, Mikolaj Fraczyk, Damien Gaboriau. On homology torsion growth. Journal of the European Mathematical Society, 2024, ⟨DOI 10.4171/JEMS/1411⟩. ⟨hal-03270482v2⟩
92 Consultations
182 Téléchargements

Altmetric

Partager

More