Explicit Regularisation in Gaussian Noise Injections - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Explicit Regularisation in Gaussian Noise Injections

Résumé

We study the regularisation induced in neural networks by Gaussian noise injections (GNIs). Though such injections have been extensively studied when applied to data, there have been few studies on understanding the regularising effect they induce when applied to network activations. Here we derive the explicit regulariser of GNIs, obtained by marginalising out the injected noise, and show that it penalises functions with high-frequency components in the Fourier domain; particularly in layers closer to a neural network's output. We show analytically and empirically that such regularisation produces calibrated classifiers with large classification margins.

Dates et versions

hal-03269116 , version 1 (23-06-2021)

Identifiants

Citer

Alexander Camuto, Matthew Willetts, Umut Şimşekli, Stephen Roberts, Chris Holmes. Explicit Regularisation in Gaussian Noise Injections. Advances in Neural Processing Systems, 2020, Online, France. ⟨hal-03269116⟩
37 Consultations
0 Téléchargements

Altmetric

Partager

More