Improved Acyclicity Reasoning for Bayesian Network Structure Learning with Constraint Programming - Archive ouverte HAL Access content directly
Conference Papers Year : 2021

Improved Acyclicity Reasoning for Bayesian Network Structure Learning with Constraint Programming

Abstract

Bayesian networks are probabilistic graphical models with a wide range of application areas including gene regulatory networks inference, risk analysis and image processing. Learning the structure of a Bayesian network (BNSL) from discrete data is known to be an NP-hard task with a superexponential search space of directed acyclic graphs. In this work, we propose a new polynomial time algorithm for discovering a subset of all possible cluster cuts, a greedy algorithm for approximately solving the resulting linear program, and a generalised arc consistency algorithm for the acyclicity constraint. We embed these in the constraint programmingbased branch-and-bound solver CPBayes and show that, despite being suboptimal, they improve performance by orders of magnitude. The resulting solver also compares favourably with GOBNILP, a state-of-the-art solver for the BNSL problem which solves an NP-hard problem to discover each cut and solves the linear program exactly.
Fichier principal
Vignette du fichier
main.pdf (279.13 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03268019 , version 1 (22-06-2021)

Identifiers

  • HAL Id : hal-03268019 , version 1

Cite

Fulya Trösser, Simon de Givry, George Katsirelos. Improved Acyclicity Reasoning for Bayesian Network Structure Learning with Constraint Programming. 30th International Joint Conference on Artificial Intelligence (IJCAI-21), Aug 2021, Montreal, Canada. ⟨hal-03268019⟩
137 View
71 Download

Share

Gmail Facebook X LinkedIn More