Learned Deep Radiomics for Survival Analysis with Attention - Archive ouverte HAL
Chapitre D'ouvrage Année : 2020

Learned Deep Radiomics for Survival Analysis with Attention

Résumé

In the context of multiple myeloma, patient diagnosis and treatment planning involve the medical analysis of full-body Positron Emission Tomography (PET) images. There has been a growing interest in linking quantitative measurements extracted from PET images (radiomics) with statistical methods for survival analysis. Following very recent advances, we propose an end-to-end deep learning model that learns relevant features and predicts survival given the image of a lesion. We show the importance of dealing with the variable scale of the lesions, and propose to this end an attention strategy deployed both on the spatial and channels dimensions, which improves the model performance and interpretability. We show results for the progression-free survival prediction of multiple myeloma (MM) patients on a clinical dataset coming from two prospective studies. We also discuss the difficulties of adapting deep learning for survival analysis given the complexity of the task, the small lesion sizes, and PET low SNR (signal to noise ratio).
Fichier principal
Vignette du fichier
PRIME_2020_Ludivine_Morvan.pdf (398.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03266299 , version 1 (21-06-2021)

Identifiants

Citer

Ludivine Morvan, Cristina Nanni, Anne-Victoire Michaud, Bastien Jamet, Clément Bailly, et al.. Learned Deep Radiomics for Survival Analysis with Attention. Predictive Intelligence in Medicine (PRIME) 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, pp.35-45, 2020, ⟨10.1007/978-3-030-59354-4_4⟩. ⟨hal-03266299⟩
85 Consultations
225 Téléchargements

Altmetric

Partager

More