Most rigid representation and Cayley index of finitely generated groups - Archive ouverte HAL
Article Dans Une Revue The Electronic Journal of Combinatorics Année : 2022

Most rigid representation and Cayley index of finitely generated groups

Résumé

If $G$ is a group and $S$ a generating set, $G$ canonically embeds into the automorphism group of its Cayley graph and it is natural to try to minimize, over all generating sets, the index of this inclusion. This infimum is called the Cayley index of the group. In a recent series of works, we have characterized the infinite finitely generated groups with Cayley index $1$. We complement this characterization by showing that the Cayley index is $2$ in the remaining cases and is attained for a finite generating set.
Fichier principal
Vignette du fichier
10512-PDF file-43071-1-10-20221206.pdf (307.86 Ko) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-03264862 , version 1 (06-02-2024)

Identifiants

Citer

Paul-Henry Leemann, Mikael de La Salle. Most rigid representation and Cayley index of finitely generated groups. The Electronic Journal of Combinatorics, 2022, 29 (4), pp.4-40. ⟨10.37236/10512⟩. ⟨hal-03264862⟩
50 Consultations
14 Téléchargements

Altmetric

Partager

More