Sparsity Regret bounds for XNOR-nets++ - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Sparsity Regret bounds for XNOR-nets++

Résumé

Despite the attractive qualities of convolutional neural networks (CNNs), and the universality of architectures emerging now, CNNs are still prohibitive regarding environmental impact due to electric consumption or carbon footprint, as well as deployment in constrained platform such as microcomputers. We address this problem and sketch how PAC-Bayesian theory can be applied to learn lighter
Fichier principal
Vignette du fichier
Sparsity_Regret_bounds_for_Xnornets.pdf (354.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03262679 , version 1 (16-06-2021)
hal-03262679 , version 2 (18-06-2021)
hal-03262679 , version 3 (21-06-2021)
hal-03262679 , version 4 (11-08-2021)

Identifiants

  • HAL Id : hal-03262679 , version 4

Citer

Andrew Chee, Sébastien Loustau. Sparsity Regret bounds for XNOR-nets++. 2021. ⟨hal-03262679v4⟩
276 Consultations
188 Téléchargements

Partager

More