Kurdish spoken dialect recognition using x-vector speaker embeddings - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Kurdish spoken dialect recognition using x-vector speaker embeddings

Arash Amani
  • Fonction : Auteur
  • PersonId : 1102249
Mohammad Mohammadamini
  • Fonction : Auteur
  • PersonId : 1070002
Hadi Veisi
  • Fonction : Auteur
  • PersonId : 1090899

Résumé

This paper presents a dialect recognition system for the Kurdish language using speaker embeddings. Two main goals are followed in this research: first, we investigate the availability of dialect information in speaker embeddings, then this information is used for spoken dialect recognition in the Kurdish language. Second, we introduce a public dataset for Kurdish spoken dialect recognition named Zar. The Zar dataset comprises 16,385 utterances in 49h-36min for five dialects of the Kurdish language (Northern Kurdish, Central Kurdish, Southern Kurdish, Hawrami, and Zazaki). The dialect recognition is done with x-vector speaker embedding which is trained for speaker recognition using Vox-celeb1 and Voxceleb2 datasets. After that, the extracted x-vectors are used to train support vector machine (SVM) and decision tree classifiers for dialect recognition. The results are compared with an i-vector system that is trained specifically for Kurdish spoken dialect recognition. In both systems (i-vector and x-vector), the SVM classifier with 86% of precision results in better performance. Our results show that the information preserved in the speaker embeddings can be used for automatic dialect recognition.
Fichier principal
Vignette du fichier
Kurdish spoken dialect recognition.pdf (286.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03262435 , version 1 (19-06-2021)

Identifiants

  • HAL Id : hal-03262435 , version 1

Citer

Arash Amani, Mohammad Mohammadamini, Hadi Veisi. Kurdish spoken dialect recognition using x-vector speaker embeddings. 2021. ⟨hal-03262435⟩

Collections

UNIV-AVIGNON LIA
264 Consultations
225 Téléchargements

Partager

More