Semialgebras and Weak Distributive Laws - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Semialgebras and Weak Distributive Laws

Résumé

Motivated by recent work on weak distributive laws and their applications to coalgebraic semantics, we investigate the algebraic nature of semialgebras for a monad. These are algebras for the underlying functor of the monad subject to the associativity axiom alone-the unit axiom from the definition of an Eilenberg-Moore algebras is dropped. We prove that if the underlying category has coproducts, then semialgebras for a monad M are in fact the Eilenberg-Moore algebras for a suitable monad structure on the functor id + M , which we call the semifree monad M^s. We also provide concrete algebraic presentations for semialgebras for the maybe monad, the semigroup monad and the finite distribution monad. A second contribution is characterizing the weak distributive laws of the form M T ⇒ T M as strong distributive laws M^s T ⇒ T M^s subject to an additional condition.
Fichier principal
Vignette du fichier
main.pdf (293.16 Ko) Télécharger le fichier
example.pdf (116.24 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03261093 , version 1 (18-06-2021)
hal-03261093 , version 2 (08-09-2021)
hal-03261093 , version 3 (13-12-2024)

Identifiants

Citer

Daniela Petrişan, Ralph Sarkis. Semialgebras and Weak Distributive Laws. 2021. ⟨hal-03261093v2⟩
175 Consultations
211 Téléchargements

Altmetric

Partager

More