Asymptotic behavior of a class of multiple time scales stochastic kinetic equations - Archive ouverte HAL
Article Dans Une Revue Stochastic Processes and their Applications Année : 2023

Asymptotic behavior of a class of multiple time scales stochastic kinetic equations

Résumé

We consider a class of stochastic kinetic equations, depending on two time scale separation parameters $\epsilon$ and $\delta$: the evolution equation contains singular terms with respect to $\epsilon$, and is driven by a fast ergodic process which evolves at the time scale $t/\delta^2$. We prove that when $(\epsilon,\delta)\to (0,0)$, the density converges to the solution of a linear diffusion PDE. This is a mixture of diffusion approximation in the PDE sense (with respect to the parameter $\epsilon$) and of averaging in the probabilistic sense (with respect to the parameter $\delta$). The proof employs stopping times arguments and a suitable perturbed test functions approach which is adapted to consider the general regime $\epsilon\neq \delta$.
Fichier principal
Vignette du fichier
paperBRR.pdf (631.6 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Commentaire Ce PDF est la version preprint de l'article (version soumise à l'éditeur, avant peer-reviewing)

Dates et versions

hal-03258628 , version 1 (11-06-2021)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Charles-Edouard Bréhier, Shmuel Rakotonirina--Ricquebourg. Asymptotic behavior of a class of multiple time scales stochastic kinetic equations. Stochastic Processes and their Applications, 2023, 168, ⟨10.1016/j.spa.2023.104265⟩. ⟨hal-03258628⟩
686 Consultations
69 Téléchargements

Altmetric

Partager

More