On the locus of higher order jets of entire curves in complex projective varieties - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

On the locus of higher order jets of entire curves in complex projective varieties

Jean-Pierre Demailly

Résumé

For a given complex projective variety, the existence of entire curves is strongly constrained by the positivity properties of the cotangent bundle. The Green-Griffiths-Lang conjecture stipulates that entire curves drawn on a variety of general type should all be contained in a proper algebraic subvariety. We present here new results on the existence of differential equations that strongly restrain the locus of entire curves in the general context of foliated or directed varieties, under appropriate positivity conditions.
Fichier principal
Vignette du fichier
locus_entire_curves.pdf (203.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03258133 , version 1 (11-06-2021)

Identifiants

Citer

Jean-Pierre Demailly. On the locus of higher order jets of entire curves in complex projective varieties. 2021. ⟨hal-03258133⟩
71 Consultations
106 Téléchargements

Altmetric

Partager

More