Geometric models for plant leaf area estimation from 3D point clouds: a comparative study - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Geometric models for plant leaf area estimation from 3D point clouds: a comparative study

Mélinda Boukhana
  • Fonction : Auteur
  • PersonId : 1101707
Joris Ravaglia
  • Fonction : Auteur
  • PersonId : 1101708
Frédéric Larue
Benoit de Solan
Eric Casella
  • Fonction : Auteur
  • PersonId : 940653

Résumé

Measuring leaf areas is a critical task in plant biology. Automatic leaf area estimation from a 3D point cloud is usually done via meshing techniques or parametric surface modeling. However, there is currently no consensus on the best method because of little comparative evaluation of the techniques. In this paper, we provide evidence about the performance of each approach through a comparative study of four meshing methods and two parametric model fitting techniques applied in the plant sciences. We identified six criteria on either the leaf shape (length/width ratio, curviness, concavity) or the acquisition process (sampling density, noise, holes) which can affect the robustness of the six selected methods. We generated synthetic point clouds covering each criterion and used them to qualitatively and quantitatively evaluate the six approaches. This study allows us to highlight the benefits and drawbacks of each method and evaluate its appropriateness in a given scenario.
Fichier non déposé

Dates et versions

hal-03256446 , version 1 (10-06-2021)

Identifiants

  • HAL Id : hal-03256446 , version 1

Citer

Mélinda Boukhana, Joris Ravaglia, Franck Hetroy-Wheeler, Frédéric Larue, Benoit de Solan, et al.. Geometric models for plant leaf area estimation from 3D point clouds: a comparative study. Journées Françaises d'Informatique Graphique, Nov 2020, Nancy, France. ⟨hal-03256446⟩
95 Consultations
0 Téléchargements

Partager

More