Five years of variability in the global carbon cycle: comparing an estimate from the Orbiting Carbon Observatory-2 and process-based models - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Environmental Research Letters Année : 2021

Five years of variability in the global carbon cycle: comparing an estimate from the Orbiting Carbon Observatory-2 and process-based models

Zichong Chen
  • Fonction : Auteur correspondant
  • PersonId : 1101706

Connectez-vous pour contacter l'auteur
Deborah Nicole Huntzinger
  • Fonction : Auteur
Junjie Liu
Shilong Piao
Xuhui Wang
Stephen A. Sitch
  • Fonction : Auteur
Pierre Friedlingstein
Peter M. Anthoni
  • Fonction : Auteur
Almuth Arneth
Daniel S. Goll
Vanessa Haverd
Atul K. Jain
  • Fonction : Auteur
Emilie Joetzjer
Etsushi Kato
Sebastian Lienert
Danica L. Lombardozzi
  • Fonction : Auteur
Patrick Charles Mcguire
J. R. Melton
Julia E.M.S. Nabel
  • Fonction : Auteur
Julia Pongratz
Benjamin Poulter
Hanqin Tian
Andy J. Wiltshire
Sönke Zaehle
Scot M. Miller
  • Fonction : Auteur

Résumé

Year-to-year variability in CO2 fluxes can yield insight into climate-carbon cycle relationships, a fundamental yet uncertain aspect of the terrestrial carbon cycle. In this study, we use global observations from NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite for years 2015-2019 and a geostatistical inverse model to evaluate 5 years of interannual variability (IAV) in CO2 fluxes and its relationships with environmental drivers. OCO-2 launched in late 2014, and we specifically evaluate IAV during the time period when OCO-2 observations are available. We then compare inferences from OCO-2 with state-of-the-art process-based models (terrestrial biosphere model, TBMs). Results from OCO-2 suggest that the tropical grasslands biome (including grasslands, savanna, and agricultural lands within the tropics) makes contributions to global IAV during the 5 year study period that are comparable to tropical forests, a result that differs from a majority of TBMs. Furthermore, existing studies disagree on the environmental variables that drive IAV during this time period, and the analysis using OCO-2 suggests that both temperature and precipitation make comparable contributions. TBMs, by contrast, tend to estimate larger IAV during this time and usually estimate larger relative contributions from the extra-tropics. With that said, TBMs show little consensus on both the magnitude and the contributions of different regions to IAV. We further find that TBMs show a wide range of responses on the relationships of CO2 fluxes with annual anomalies in temperature and precipitation, and these relationships across most of the TBMs have a larger magnitude than inferred from OCO-2. Overall, the findings of this study highlight large uncertainties in process-based estimates of IAV during recent years and provide an avenue for evaluating these processes against inferences from OCO-2.
Fichier principal
Vignette du fichier
Chen_2021_Environ._Res._Lett._16_054041.pdf (1.55 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03256439 , version 1 (10-06-2021)

Identifiants

Citer

Zichong Chen, Deborah Nicole Huntzinger, Junjie Liu, Shilong Piao, Xuhui Wang, et al.. Five years of variability in the global carbon cycle: comparing an estimate from the Orbiting Carbon Observatory-2 and process-based models. Environmental Research Letters, 2021, 16 (5), ⟨10.1088/1748-9326/abfac1⟩. ⟨hal-03256439⟩
19 Consultations
17 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More