Note on Artin's Conjecture on Primitive Roots - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 2022

Note on Artin's Conjecture on Primitive Roots

Résumé

E. Artin conjectured that any integer $a > 1$ which is not a perfect square is a primitive root modulo $p$ for infinitely many primes $ p.$ Let $f_a(p)$ be the multiplicative order of the non-square integer $a$ modulo the prime $p.$ M. R. Murty and S. Srinivasan \cite{Murty-Srinivasan} showed that if $\displaystyle \sum_{p < x} \frac 1 {f_a(p)} = O(x^{1/4})$ then Artin's conjecture is true for $a.$ We relate the Murty-Srinivasan condition to sums involving the cyclotomic periods from the subfields of $\mathbb Q(e^{2\pi i /p})$ corresponding to the subgroups $ \subseteq \mathbb F_p^*.$
Fichier principal
Vignette du fichier
44Article11.pdf (260 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03251183 , version 1 (06-06-2021)
hal-03251183 , version 2 (20-12-2021)

Identifiants

Citer

Sankar Sitaraman. Note on Artin's Conjecture on Primitive Roots. Hardy-Ramanujan Journal, 2022, Special Commemorative volume in honour of Srinivasa Ramanujan - 2021, Volume 44 - Special Commemorative volume in honour of Srinivasa Ramanujan - 2021, pp.136 -- 144. ⟨10.46298/hrj.2022.7664⟩. ⟨hal-03251183v2⟩
73 Consultations
516 Téléchargements

Altmetric

Partager

More