A NEW PROOF OF THE FUNCTIONAL EQUATION FOR THE RIEMANN ZETA-FUNCTION - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

A NEW PROOF OF THE FUNCTIONAL EQUATION FOR THE RIEMANN ZETA-FUNCTION

Résumé

In this article we shall prove a result which enables us to transfer from finite to infinite Euler products. As an example, we give two new proofs of the infinite product for the sine function depending on certain decompositions. Then we shall prove some equivalent expressions for the functional equation, i.e. the partial fraction expansion and the integral expression involving the generating function for Bernoulli numbers. The equivalence of the infinite product for the sine functions and the partial fraction expansion for the hyperbolic cotangent function leads to a new proof of the functional equation.
Fichier principal
Vignette du fichier
Euler_Product_Mehta.pdf (272.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03251104 , version 1 (06-06-2021)
hal-03251104 , version 2 (05-01-2022)

Identifiants

  • HAL Id : hal-03251104 , version 1

Citer

P. -y Zhu, Jay Mehta. A NEW PROOF OF THE FUNCTIONAL EQUATION FOR THE RIEMANN ZETA-FUNCTION. 2021. ⟨hal-03251104v1⟩
80 Consultations
1103 Téléchargements

Partager

More