A remark on one-harmonic maps from a Hadamard surface of pinched negative curvature to the hyperbolic plane
Résumé
We show that every one-harmonic map, in the sense of Trapani and Valli, from a Hadamard surface of pinched negative curvature to H 2 has image the interior of the convex hull of a subset of ∂∞H 2. The proof relies on Minkowski geometry, by interpreting one-harmonic maps as the Gauss maps of convex surfaces.
Domaines
Mathématiques [math]Origine | Fichiers produits par l'(les) auteur(s) |
---|