A remark on one-harmonic maps from a Hadamard surface of pinched negative curvature to the hyperbolic plane - Archive ouverte HAL
Article Dans Une Revue Josai Mathematical Monographs Année : 2021

A remark on one-harmonic maps from a Hadamard surface of pinched negative curvature to the hyperbolic plane

Résumé

We show that every one-harmonic map, in the sense of Trapani and Valli, from a Hadamard surface of pinched negative curvature to H 2 has image the interior of the convex hull of a subset of ∂∞H 2. The proof relies on Minkowski geometry, by interpreting one-harmonic maps as the Gauss maps of convex surfaces.
Fichier principal
Vignette du fichier
Remark on one-harmonic maps.pdf (308 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03246924 , version 1 (02-06-2021)
hal-03246924 , version 2 (25-03-2022)

Identifiants

Citer

François Fillastre, Andrea Seppi. A remark on one-harmonic maps from a Hadamard surface of pinched negative curvature to the hyperbolic plane. Josai Mathematical Monographs, 2021, 13, pp.63-171. ⟨10.20566/13447777_13_163⟩. ⟨hal-03246924v2⟩
57 Consultations
68 Téléchargements

Altmetric

Partager

More