A Non-asymptotic Approach to Best-Arm Identification for Gaussian Bandits - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

A Non-asymptotic Approach to Best-Arm Identification for Gaussian Bandits

Résumé

We propose a new strategy for best-arm identification with fixed confidence of Gaussian variables with bounded means and unit variance. This strategy, called Exploration-Biased Sampling, is not only asymptotically optimal: it is to the best of our knowledge the first strategy with non-asymptotic bounds that asymptotically matches the sample complexity. But the main advantage over other algorithms like Track-and-Stop is an improved behavior regarding exploration: Exploration-Biased Sampling is biased towards exploration in a subtle but natural way that makes it more stable and interpretable. These improvements are allowed by a new analysis of the sample complexity optimization problem, which yields a faster numerical resolution scheme and several quantitative regularity results that we believe of high independent interest.
Fichier principal
Vignette du fichier
BGK22_non_asymptotic_approach_BAI_HAL.pdf (841.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03236583 , version 1 (26-05-2021)
hal-03236583 , version 2 (04-03-2022)

Identifiants

Citer

Antoine Barrier, Aurélien Garivier, Tomáš Kocák. A Non-asymptotic Approach to Best-Arm Identification for Gaussian Bandits. AISTATS 2022 - 25th International Conference on Artificial Intelligence and Statistics, Mar 2022, Virtual, Spain. ⟨hal-03236583v2⟩
189 Consultations
166 Téléchargements

Altmetric

Partager

More