Bridging the Multiscale Hybrid-Mixed and Multiscale Hybrid High-Order methods - Archive ouverte HAL
Article Dans Une Revue ESAIM: Mathematical Modelling and Numerical Analysis Année : 2021

Bridging the Multiscale Hybrid-Mixed and Multiscale Hybrid High-Order methods

Résumé

We establish the equivalence between the Multiscale Hybrid-Mixed (MHM) and the Multiscale Hybrid High-Order (MsHHO) methods for a variable diffusion problem with piecewise polynomial source term. Under the idealized assumption that the local problems defining the multiscale basis functions are exactly solved, we prove that the equivalence holds for general polytopal (coarse) meshes and arbitrary approximation orders. We also leverage the interchange of properties to perform a unified convergence analysis, as well as to improve on both methods.
Fichier principal
Vignette du fichier
mhmhho.pdf (468.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03235525 , version 1 (25-05-2021)
hal-03235525 , version 2 (07-12-2021)
hal-03235525 , version 3 (07-01-2022)

Identifiants

Citer

Théophile Chaumont-Frelet, Alexandre Ern, Simon Lemaire, Frédéric Valentin. Bridging the Multiscale Hybrid-Mixed and Multiscale Hybrid High-Order methods. ESAIM: Mathematical Modelling and Numerical Analysis, In press, ⟨10.1051/m2an/2021082⟩. ⟨hal-03235525v2⟩
296 Consultations
173 Téléchargements

Altmetric

Partager

More