How many modes are needed to predict climate bifurcations? Lessons from an experiment - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Nonlinear Processes in Geophysics Année : 2022

How many modes are needed to predict climate bifurcations? Lessons from an experiment

Résumé

According to everyone's experience, predicting the weather reliably over more than 8 d seems an impossible task for our best weather agencies. At the same time, politicians and citizens are asking scientists for climate projections several decades into the future to guide economic and environmental policies, especially regarding the maximum admissible emissions of CO2. To what extent is this request scientifically admissible? In this review we will investigate this question, focusing on the topic of predictions of transitions between metastable states of the atmospheric or oceanic circulations. Two relevant examples are the switching between zonal and blocked atmospheric circulation at mid-latitudes and the alternation of El Niño and La Niña phases in the Pacific Ocean. The main issue is whether present climate models, which necessarily have a finite resolution and a smaller number of degrees of freedom than the actual terrestrial system, are able to reproduce such spontaneous or forced transitions. To do so, we will draw an analogy between climate observations and results obtained in our group on a laboratory-scale, turbulent, von Kármán flow in which spontaneous transitions between different states of the circulation take place. We will detail the analogy, investigate the nature of the transitions and the number of degrees of freedom that characterize the latter, and discuss the effect of reducing the number of degrees of freedom in such systems. We will also discuss the role of fluctuations and their origin and stress the importance of describing very small scales to capture fluctuations of correct intensity and scale.
Fichier principal
Vignette du fichier
2022_Dubrulle_et_al_NPG.pdf (4.44 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03230580 , version 1 (20-05-2021)
hal-03230580 , version 2 (09-02-2022)

Licence

Paternité

Identifiants

Citer

Bérengère Dubrulle, François Daviaud, Davide Faranda, Louis Marié, Brice Saint-Michel. How many modes are needed to predict climate bifurcations? Lessons from an experiment. Nonlinear Processes in Geophysics, 2022, 29, pp.17-35. ⟨10.5194/npg-29-17-2022⟩. ⟨hal-03230580v2⟩
143 Consultations
70 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More