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Abstract. According to everyone’s experience, predicting
the weather reliably over more than 8 d seems an impossible
task for our best weather agencies. At the same time, politi-
cians and citizens are asking scientists for climate projec-
tions several decades into the future to guide economic and
environmental policies, especially regarding the maximum
admissible emissions of CO2. To what extent is this request
scientifically admissible?

In this review we will investigate this question, focusing
on the topic of predictions of transitions between metastable
states of the atmospheric or oceanic circulations. Two rele-
vant examples are the switching between zonal and blocked
atmospheric circulation at mid-latitudes and the alternation
of El Niño and La Niña phases in the Pacific Ocean. The
main issue is whether present climate models, which neces-
sarily have a finite resolution and a smaller number of de-
grees of freedom than the actual terrestrial system, are able
to reproduce such spontaneous or forced transitions. To do
so, we will draw an analogy between climate observations
and results obtained in our group on a laboratory-scale, tur-
bulent, von Kármán flow in which spontaneous transitions
between different states of the circulation take place. We will
detail the analogy, investigate the nature of the transitions and
the number of degrees of freedom that characterize the latter,
and discuss the effect of reducing the number of degrees of

freedom in such systems. We will also discuss the role of
fluctuations and their origin and stress the importance of de-
scribing very small scales to capture fluctuations of correct
intensity and scale.

1 Context

The present review paper is based on the lecture delivered
by Bérengère Dubrulle on the occasion of her reception of
the Lewis Fry Richardson Medal 2021. The story around
this lecture started back in the year 2000, when Bérengère
became interested in climate change and started discussions
with colleagues at the Laboratoire des Sciences du Climat et
de l’Environnement (LSCE). She was intrigued by a strange
behaviour of the temperature curves discussed in the IPCC
reports: they all exhibited a constant, quasi-linear increase
with time, linearly following the rise of CO2 concentration.
Given that the perturbation of the CO2 concentration was far
from being negligible (we were talking about doubling it)
and that climate is a highly non-linear system, she was won-
dering why the output of climate models did not show at the
time any sign of a non-linear response. It was surprising as
her research group routinely observed non-linear behaviour
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18 B. Dubrulle et al.: How many modes do we need to describe climate change?

such as bifurcations or saturations in experimental set-ups or
in numerical simulations of turbulent flows.

She became all the more puzzled as the climate com-
munity was starting to acknowledge the possibility of oc-
currence of tipping points (Russill and Nyssa, 2009; Rus-
sill, 2015). In particular, some of her frequent interlocu-
tors like Didier Paillard, Pascal Yiou, or Gilles Ramstein
showed her interesting occurrences of bifurcations in low-
dimensional models of the atmosphere (e.g. the Stommel
model, Stommel, 1961) or spontaneous abrupt transitions in
(proxies of) temperature records during the last hundreds of
millennia (see Fig. 1). More recently, multi-stability and bi-
furcations were also observed in a simplified climate model
(Margazoglou et al., 2021).

On the other hand, the climate science community has
achieved considerable success in predicting the increase in
Earth average temperatures in the last few decades. This suc-
cess shows that present climate models, though still incom-
plete and perfectible, capture the correct evolution of atmo-
spheric or oceanic circulation, at least in terms of large-scale
features and most probable events. Recent versions of cli-
mate models also include non-linear effects on oceanic circu-
lation (Boucher et al., 2020), vegetation (Guimberteau et al.,
2018), and ice-sheet dynamics (Le Clec’h et al., 2019). They
also better represent the energy and water cycles, includ-
ing more physical constraints on conservation laws (Irving
et al., 2021). They are therefore able to capture nowadays
some non-linear interactions between the different compo-
nents of the climate system, i.e. the El Niño–Southern Oscil-
lation (ENSO) feedback to atmospheric motions (Bayr et al.,
2020), monsoons (Yang et al., 2019), or stratospheric-to-
tropospheric interactions (Olsen et al., 2007). Geophysicists
are therefore studying extensively the non-linear properties
of the different components of the climate system (atmo-
sphere, hydrosphere, lithosphere, biosphere, and cryosphere)
that appear ubiquitously.

In the atmosphere, characterizing the geometry and the dy-
namics of the polar jet is still an open problem, as it can be
in an almost zonally symmetric state with strong zonal cur-
rents associated with trains of extratropical cyclones or in
broken, flower-like, so-called “blocked” states which induce
hot or cold waves depending on the season and the geogra-
phy (Serra et al., 2017). Despite the great increase in com-
putational power of climate models, the switching between
the two main phases of the jet is still difficult to character-
ize statistically and dynamically (Faranda et al., 2019b). It
is therefore complicated to determine its evolution under cli-
mate change.

In fact, non-linear phenomena arise in all the “spheres”.
In the ocean, while ENSO is reproduced by most models,
correctly reproducing the magnitude and frequency of its oc-
currence is still challenging, and the fate of the thermoha-
line circulation remains to be determined, whereas the bio-
sphere is a mine of non-linear interactions between living
species directly breathing the non-linear atmospheric chem-

istry and reacting non-linearly (losing leaves, migrating, hi-
bernating, etc.) to changes in their physical environment.

Considering all that, it appeared clear to Bérengère that
the richness of non-linear interactions in climate needed to
be further understood, and she had a feeling that laboratory
experiments of turbulence could help guide intuition regard-
ing the role of such non-linearities in climate bifurcations, as
already demonstrated earlier by Weeks et al. (1997) and the
work of Hide (Ghil et al., 2010).

This review is the story of the long journey she undertook
with four main collaborators into theoretical, laboratory, and
numerical explorations to try and understand these mysteri-
ous apparent contradictions and examine how many modes it
takes to capture transitions in climate models.

2 How many degrees of freedom are theoretically and
practically involved in climate simulations?

Simulating climate is an arduous task, for we need to de-
scribe the interaction of fluid envelopes (atmosphere, ocean)
with the lithosphere, cryosphere, and biosphere under so-
lar forcing. This makes the climate a non-equilibrium non-
linear and complex system. “Complex” here means that there
are several interacting scales at which the energy is accumu-
lated and distributed in space, time, and towards other scales
through energetic processes that are visible to humans as me-
teorological and oceanic phenomena, e.g. cyclones, thunder-
storms, marine currents, or iceberg break-off. How many de-
grees of freedom are needed to take into account this com-
plexity is still an open question. The number we choose is
therefore fixed by necessity (i.e. by computing capabilities)
rather than by reason. Let us take for example the case of the
fluid envelopes.

Their basic physics obey the non-linear, partial differen-
tial equations proposed by Navier and Stokes 200 years ago.
They describe the dynamics of a velocity field u(x, t) un-
der the action of a pressure field, viscous dissipation, and
stirring by volume forces. From the work of Kolmogorov
on turbulence (Kolmogorov, 1991), hereafter referred to as
the K41 theory of turbulence, we know that the balance be-
tween forcing and dissipation results in a self-similar organi-
zation of the fluid. Kinetic energy is injected at scale Lf and
is transferred at a constant rate ε by the energy flux down to
the scale η where the energy flux becomes compensated by
the viscous flux, with η = (ν3/ε)1/4 and ν the viscosity. At
smaller scales, the energy flux is transported by the viscous
processes to the smallest hydrodynamic scale, where it is dis-
sipated into heat. A turbulent flow then displays vortices of
all sizes in between Lf and η, and its energy spectrum scales
like E(k)∼ ε2/3k−5/3. This means that if we want to capture
the flow physics (e.g. location of vortices and their dynam-
ics in the flow, energy dissipation, interplay between vortices
at different scales), we need to discretize the Navier–Stokes
equations on a grid that is (Lf/η)× (Lf/η)× (Lf/η), con-
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Figure 1. (a) Diagram of a Dansgaard–Oeschger event, alternating hot (red) and cold (blue and sky blue) periods, some of which coincide
with a massive iceberg debacle (numbered with an H). A reconstruction of the oceanic circulation during this period (provided in the insets)
shows that each phase of this cycle is associated with a different oceanic circulation (Sarnthein et al., 1994). (b) Recording of the rapid climate
variability of the last ice age obtained by the δ18O isotope profile for the Greenland core. The x axis represents the time spent (ka). Our present
time is located at the origin of this axis. We indicate the first five marine isotope stages (MIS) on the graph. Traditionally, the temperature
is reconstructed from a relationship between temperature and δ18O. However, many biases, such as the seasonality of precipitation or the
temperature of regions of evaporation of water masses, lead to an underestimated reconstructed temperature. Thus, the temperature difference
between the current period and the last glacial maximum at 21 000 years is estimated at 20 ◦C, while a Dansgaard–Oeschger (numbered)
event is estimated between 10 and 16 ◦C (adapted from Andersen, 2004).

taining a priori N ∼ (Lf/η)
3 degrees of freedom (as we shall

discuss later, the actual number may even be larger). If we
put numbers corresponding to the atmosphere (L= 103 km,
η = 10 mm) and take into account the anisotropy (Schertzer
and Lovejoy, 1991), we get an astronomical number, N ∼
1027, larger than the Avogadro number. Reading in or writ-
ing out this volume of data at each time step to advance the
flow would take 73 billion years of CPU time at the pace of
the fastest massively parallel computers.

In recent years there have been developments in
understanding that this computational nightmare can
be partially solved by applying neural networks or,
more generally, machine learning approaches (see e.g.
Pathak et al. (2017, 2018) for artificial intelligence methods
applied to the behaviour of chaotic systems). We would like
to stress that these approaches are never holistic and of-
ten target a specific subset of spatial and temporal scales of
the climate systems, e.g. the prediction of geophysical data
(Wu et al., 2018), the parameterizations of subgrid processes
in climate models (Krasnopolsky et al., 2005; Krasnopol-
sky and Fox-Rabinovitz, 2006; Rasp et al., 2018; Gentine
et al., 2018; Brenowitz and Bretherton, 2018, 2019; Yuval
and O’Gorman, 2020; Gettelman et al., 2020; Krasnopolsky
et al., 2013), the forecasting (Liu et al., 2015; Grover et al.,

2015; Haupt et al., 2018; Weyn et al., 2019; Faranda et al.,
2021) and nowcasting (i.e. extremely short-term forecasting)
of weather variables (Shi et al., 2015, 2017; Sprenger et al.,
2017), and the quantification of the uncertainty of deter-
ministic weather prediction (Scher and Messori, 2018). The
greatest challenge of entirely replacing the equations of cli-
mate models with neural networks capable of producing re-
liable long- and short-term forecasts of meteorological vari-
ables has, to the best of our knowledge, not yet been achieved
with these methods.

We are then led by necessity to simulate far fewer degrees
of freedom, typically a few thousands in the atmosphere or
ocean for recent climate models. How reasonable is this dras-
tic reduction of the number of degrees of freedom? It now
depends on the flow physics: the self-similar energy spec-
trum is an indication that some scales or modes may play
a more prominent role than others. So, maybe, the theoret-
ical N ∼ (Lf/η)

3 figure overestimates the actual number of
modes that are needed to represent the flow dynamics, and
we could circumvent the computational obstacle by a clever
selection of grid points or modes. In 1963, a pioneer study by
Lorenz (1963) showed that only three modes were necessary
to obtain chaotic behaviour on an attractor and reproduce
some key dynamical effects observed in Rayleigh–Bénard
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convection, an essential ingredient of atmospheric dynamics.
More generally, it is thought that if we were able to under-
stand what the “attractor” of the climate dynamics is, then
the number of modes we would need is simply the dimension
of such an attractor. However, both the computation of the at-
tractor for climate and the identification of the independent
variable sufficient to describe it are still highly debated is-
sues that remain far from being solved theoretically (Faranda
et al., 2019a; Falasca et al., 2019; Brunetti et al., 2019).

Climate models therefore use a simpler idea and currently
select modes based on length scales: the idea is that the
largest scales are very energetic and do not directly feel the
viscosity, which becomes active only at scales of the order
of η. The large scales are however indirectly influenced by
the viscosity through their interaction with the small scales,
which play the role of a “turbulent viscosity” with respect to
the large scales. The concept of turbulent viscosity is there-
fore akin to a clever renormalization procedure that takes
care of the energy accumulation taking place at the cut-off
scale (Forster et al., 1977; Frisch et al., 1980; Herring et al.,
1982). Hence, current climate models only keep the largest
modes and add a “turbulent viscosity” to take into account
the influence of the small scales. The magnitude of the tur-
bulent viscosity is known to depend on the cut-off scale since
Richardson (Richardson and Walker, 1926) and is usually
significantly higher than the classical Newtonian viscosity of
the fluids under study: for a cut-off scale of the order of a few
hundred kilometres – the smallest scale that climate models
can currently solve without saturating memories of modern
supercomputers – turbulent viscosities are equivalent to the
Newtonian viscosity of tar in the atmosphere, while in the
ocean, they are equal to that of honey.

Replacing air and water with tar and honey does not look
too appealing. Moreover, there are a lot of more complex pro-
cesses like beating/backscatter/intermittency (Forster et al.,
1977; Frisch et al., 1980; Herring et al., 1982) that cannot
be taken into account by a simple “turbulent viscosity”, yet
numerical simulations based on these assumptions provide a
fairly realistic picture of the past and present states of circu-
lation in the ocean and in the atmosphere (Flato et al., 2013).
There is therefore a rationale in this procedure that we should
try to understand and improve. To do so, we considered a lab-
oratory model experiment that retains some essential proper-
ties of natural flows (forcing, dissipation, symmetries, wide
range of spatial and temporal scales) but with simple bound-
ary conditions and few interacting components in order to
limit the number of relevant observables to be analysed. To
some extent, this is similar to the simplification obtained by
considering a perfect monoatomic gas to describe a real gas.

3 The von Kármán flow, an analogue for oceanic or
atmospheric large-scale circulation

Our experimental set-up is summarized in Fig. 2: we con-
sider a transparent cylindrical tank of aspect ratio 1.8 filled
with water. The tank is closed at each end by two coaxial and
counter-rotating impellers with curved blades. Such a device
provides a very efficient, inertial stirring of the liquid inside
the tank, which easily reaches speeds of the order of 1ms−1

for an impeller rotation frequency of 10 Hz in a 10 cm radius
tank. The flow produced in the device (called von Kármán
flow) is highly turbulent, characterized by a Reynolds num-
ber in water around 106 – about 1000 times lower than in the
atmosphere. We characterize the flow using two complemen-
tary types of measurements.

1. The torque or velocity applied by each of the impellers
to the turbulent flow. These are global measurements of
the state of the system.

2. Local velocity maps obtained using stereoscopic par-
ticle image velocimetry (s-PIV). These measurements
give us access to the three instantaneous components of
the velocity field in a vertical plane crossing the cen-
tre of the experiment with an acquisition rate of about
15 Hz. This rate is insufficient to resolve in time all tur-
bulent scales but offers reliable statistics on the velocity
field, obtained by averaging several thousands of instan-
taneous maps.

Averaging a large number of instantaneous velocity fields
during statistically steady regimes allows us to observe the
mean flow established in the geometry. It takes the form of a
large-scale circulation carrying the vertical angular momen-
tum from one impeller to the other. This circulation is anal-
ogous to the atmospheric or thermohaline circulation, trans-
porting heat from the Equator to the pole, under the action of
either solar radiative forcing and/or surface forcing by winds.
The analogy is summarized in Table 1.

We have used our von Kármán set-up in two complemen-
tary forcing modes. In the first mode, the rotation rates of the
impellers are kept fixed. In this case one can set the mean
rotation rate of the impellers, (f1+ f2)/2, but also the nor-
malized rotation rate difference of the impellers, θ = (f1−

f2)/(f1+f2). The former quantity governs the total angular
momentum – along the vertical axis – present in the fluid.
The latter parameter offers a fine control of the degree of Rπ

symmetry of the flow forcing. Such a forcing mechanism is
analogous to convective Rayleigh–Bénard systems with fixed
temperature gradients. However, in natural systems, the forc-
ing is rather done by imposing the heat flux that traverses the
system (due to solar radiation). We have thus also performed
experiments in a second forcing mode in which we controlled
the torque applied to the von Kármán flow by the impellers.
In this mode, the mean torque (c1+c2)/2 is a measure of the
vertical angular momentum flux from top to bottom, while
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Figure 2. Picture and diagram of the experimental set-up. The black arrows indicate the direction of turbine rotation. Symmetry: the system
is symmetric by any rotation Rπ – an angle π (shown by the red arrow) around any axis located in the equatorial plane and passing through
the axis of rotation – it is the symmetry of an hourglass that is reversed. Positive vertical angular momentum is injected at the bottom, and
negative vertical angular momentum is injected at the top via the impellers. The resulting imbalance induces a large-scale circulation, from
the top and bottom to the middle plane, in analogy with the large-scale oceanic or atmospheric circulations from the Equator to the poles
(picture courtesy of Pierre Cortet).

Table 1. Analogy between the Earth system fluid envelopes and the von Kármán turbulent swirling flow stirred by impellers (Fig. 2).

Natural flows von Kármán flow

Geometry Spherical Cylindrical

Energy source Solar radiation Impeller rotation

Energy sink Long-wave radiation Viscous dissipation

Transported quantity Heat Vertical angular momentum

Fixed parameter Solar constant
Mean impeller rotation rate Mean impeller torque
(f1+ f2)/2 (c1+ c2)/2

Impeller rotation rate imbalance Impeller torque imbalance
Perturbations CO2 concentration θ = (f1− f2)/(f1+ f2), δ = (c1− c2)/(c1+ c2),

Impeller geometry

Mean and imbalance Mean and imbalance
Global mean T angular momentum flux impeller rotation rate

Observables (c1+ c2)/2 (f1+ f2)/2

Equator–pole 1T δ = (c1− c2)/(c1+ c2) θ = (f1− f2)/(f1+ f2)
Global vertical angular momentum I =

∫
ruθ dV

Fluids Air, water Water

Reduced system equivalent Tar, honey Glycerol
A priori degrees of freedom N ∼ 1024 N ∼ 1013

Reduced system degrees of freedom Nr ∼ 104 Nr ∼ 104

the reduced difference γ = (c1− c2)/(c1+ c2), which pre-
scribes the dissipation of angular momentum at the cylinder
wall, also controls the level of Rπ symmetry of the forcing
mechanism. In principle, a mixed forcing type in which the
rotation rate of one impeller and the torque of the other one

are fixed is also possible, but we have not yet explored the
behaviour of the system in this case.

One can control the degree of perturbation in the von Kár-
mán flow by controlling the level of velocity fluctuations for
a given set of forcing conditions and viscosity. This may be
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achieved by changing the curvature of the impeller blades,
which will be used as an analogue of changes in CO2 con-
centration in natural flows.

We can also change the number of degrees of freedom in
the von Kármán flow by considering more or less viscous
fluids, going from N ∼ 1013 for a water-filled experiment at
Re ∼ 106 down to N ∼ 104 for a glycerol-filled experiment
at Re ∼ 102. This is an experimental equivalent of the reduc-
tion of the number of degrees of freedom that is explicitly
done when using turbulent viscosities in present numerical
simulations of atmospheric or oceanic circulation. Eventu-
ally, the only major difference between natural flows and the
von Kármán flow is the symmetry of the geometry, which is
spherical rather than cylindrical. From the point of view of a
theoretical physicist, though, this difference only affects the
detailed shape of the circulation.

4 Large-scale circulation properties

4.1 Flow symmetries and circulation topology

In the von Kármán system, vertical angular momentum of
opposite signs is injected by the top and bottom impellers.
The resulting imbalance produces a large-scale meridional
circulation analogous to the large-scale oceanic and atmo-
spheric circulations between the Equator and the poles. The
topology of the large-scale circulation is strongly influenced
by the symmetries of the experimental set-up. Arbitrary ro-
tations around the cylinder axis obviously leave the exper-
imental set-up invariant. Its symmetry group thus contains
the symmetry group of the oriented circle, the special or-
thogonal group SO(2). This symmetry usually carries over,
in the time-averaged sense, to the large scales of the flow.
Another basic symmetry of the system is the Rπ symme-
try, which exchanges the two impellers by rotation of 180◦

around any axis of the middle plane which intersects the
cylinder axis (the “hourglass reversal” symmetry; see Fig. 2).
When the two impellers rotate at exactly the same frequency
f1 = f2, corresponding to a relative speed difference θ =
(f1−f2)/(f1+f2)= 0, the system is strictly symmetric with
respect to Rπ and its symmetry group is the (general) or-
thogonal group O(2). When θ 6= 0, Rπ is broken and the ex-
periment symmetry group reduces to the special orthogonal
group SO(2). The latter is the (connected) component of O(2)
whose elements have +1 determinants, the other component
having determinants −1. This explains how O(2) reduces to
SO(2) with the breakdown of rotational symmetry. Except on
“Aqua-planets” (Ferreira et al., 2011), the symmetry group of
the continents is trivial. If one neglects the continental influ-
ences, the symmetry group of the atmosphere is SO(2)×Z2
(rotations around the polar axis and mirror symmetry with
respect to the Equator), while the symmetry group of each
hemisphere taken separately is SO(2). These symmetry con-
siderations guide us in our search for analogies between the

von Kármán system and the Earth system: in some respects,
the symmetry group of the Rπ -asymmetric von Kármán flow
is the same as the symmetry group of the atmosphere in a
single hemisphere, and insight gained in the study of vertical
angular momentum transport in the von Kármán flow may
be expected to carry over to the transport of heat from the
Equator to one pole in the natural atmosphere.

However, it is well known that the distinct distribution of
continental masses between the two hemispheres or the in-
sulation distribution on seasonal timescales breaks the mir-
ror symmetry of the Earth with respect to the Equator. The
SO(2)×Z2 symmetry of the Earth system is thus in fact quite
imperfect and in some respects closer to the SO(2) symme-
try of the von Kármán flow in Rπ -asymmetric conditions.
It can thus be hoped that some aspects of the von Kármán
flow could also bear resemblance to phenomena involving
the Earth system as a whole, such as the seasonal motion of
the Intertropical Convergence Zone at the boreal summer–
austral summer transitions, the oceanic thermohaline circu-
lation, or the glacial–interglacial climate transitions.

The different large-scale flow configurations observed in
the von Kármán flow in the rotation-rate-controlled mode
when θ is varied are represented in Fig. 3. For large neg-
ative (Fig. 3b) or positive (Fig. 3c) values of θ , Rπ is un-
ambiguously broken, and the flow is in a SO(2) configura-
tion consisting of a single cell rotating in the direction of the
fastest impeller (the analogue of a direct Equator–pole at-
mospheric meridional circulation in a single hemisphere, of
an austral or boreal summer with grossly exaggerated inter-
hemisphere asymmetry, or of a glacial episode). In this case
the total mean vertical angular momentum 〈I 〉 = 〈

∫
ruθ dV 〉

follows the sign of θ . Negative 〈I 〉 corresponds to b− states
(“austral summer”, henceforth “A” states), whereas positive
〈I 〉 corresponds to b+ states (“boreal summer”, henceforth
“B” states). The B state obtained for a value of θ is trans-
formed by Rπ into the A state obtained for −θ .

When θ becomes close to 0, the configuration obtained is
closer to Rπ symmetry: it consists of two toroidal recircula-
tion cells arranged on either side of the median plane, rotat-
ing in opposite azimuthal directions (Fig. 3a). The two halves
of the von Kármán flow are almost Rπ -symmetric images of
one another, and the total mean vertical angular momentum
is close to zero: 〈I 〉 ' 0. In a way, the situation can also be
said to resemble the global Earth system in which the two
hemispheres are approximately images of one another by re-
flection across the equatorial plane separated by an interface
that shifts gradually as the symmetry of the forcing is varied
(in analogy to the seasonal cycle of insulation, which brings
the latitude of maximal solar energy input into the Earth sys-
tem alternatively in the two hemispheres). This situation is
thus reminiscent of a “spring” or “autumn” transition situa-
tion (henceforth “T” state) or of an interglacial situation.

However, the situation in that case can also be considered
to be analogue to the atmospheric situation in a single hemi-
sphere: it consists of two toroidal recirculation cells arranged
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Figure 3. Different states observed in our system. (a) Two-cell symmetric state (“spring” or “autumn” transition, or “T”, state). (b) One-cell
asymmetric state b+ (“austral summer”, or “A”, state). (c) One-cell asymmetric state b− (“boreal summer”, or “B”, state). The normalized
azimuthal flow ũθ = 2uθ/R(f1+ f2) is shown in colour (from negative blue to positive red), while the radial and vertical speeds (ur,uz)
are represented by arrows. The resolution of the fields has been degraded for better visibility. The positions x and z have been rescaled by
the radius of the cylinder R. The higher amplitudes in (b) and (c) with respect to (a) reflect a fundamental energetic difference linked to the
very strong shear layer appearing at the interface between the flow, rotating in the direction of the dominant impeller, and the slave impeller,
which rotates otherwise. As a result, the energy dissipation is 4 times larger in (b) and (c) with respect to (a).

on either side of a transition plane, separated by a highly tur-
bulent shear layer – a configuration somewhat equivalent to
the Hadley circulation of the atmosphere: positive vertical
angular momentum fluid is confined to the lower half of the
cylinder, negative vertical angular momentum fluid is con-
fined to the upper half, and vertical angular momentum trans-
port between the two is only mediated by the turbulent fluc-
tuations, which have a visual appearance strikingly similar
to that of synoptic-scale atmospheric disturbances. This sit-
uation prevails for small values of the impeller rotation rate
imbalance θ , for which the mid-plane shear layer (analogue
of the mid-latitude “storm track”) shifts continuously in “lat-
itude” as θ varies, moving gradually away from the fastest-
rotating impeller.

4.2 Seasonal cycle in the water experiment

Given the properties of the large-scale circulation, we are
therefore able to produce the equivalent of a “seasonal cy-
cle” in our experiment by modulating the forcing asymmetry
as a function of time θ(t). This modulation reflects the yearly
modulation of the heat flux imbalance between the poles and
the Equator as the Earth revolves around the Sun. An exam-
ple of the reaction of the mean vertical angular momentum
〈I 〉 to such a seasonal cycle in the von Kármán water ex-
periment is shown in Fig. 4a. On average, the flow responds
continuously – yet in a non-linear fashion – to the forcing
imbalance θ : the shift between the A and B states is pro-
gressive, as observed on Earth. Indeed, boreal summer and
austral summer circulations have different characteristics on
our planet, and they are often studied separately (Vrac et al.,
2014). For a given value of θ , the instantaneous value of I is
however fluctuating, as illustrated in Fig. 4b, and similarly to
the fluctuations of the daily temperatures on Earth.

4.3 Transitions induced by changes in the velocity
fluctuation intensity

We can now apply a perturbation to our system by imposing
higher-velocity fluctuations (“increasing CO2”) using blades
that are more curved. In that case, we observe an interest-
ing bifurcation: when the level of fluctuations is sufficiently
high, the seasonal cycle becomes discontinuous and the tran-
sition between the A and B states becomes brutal, with a
jump in the global mean vertical angular momentum 〈I 〉, as
seen in Fig. 5. In addition, this discontinuous seasonal cy-
cle shows hysteresis: once we have switched to one of the
summer branches, if we decrease again θ , the flow jumps di-
rectly to the other summer branch without going through the
T state (Ravelet et al., 2004; Ravelet, 2005). Once the flow
is in one of the two summer states, its configuration remains
the same permanently unless the parameters of the forcing
are changed. The transition from one of the summer states to
the T state seems forbidden, and we have never been able to
observe it.

The symmetric T state is then particulary difficult to reach,
as it becomes marginally stable: starting from a symmetric
state at θ ∼ 0, the flow switches to either of the summer states
after a time that diverges as θ−6 (Ravelet, 2005). Thus, the
lifetime of the two-cell symmetric state is then drastically
shortened even for small values of |θ |. This observation is
reminiscent of what happens on Earth. For the atmospheric
circulation, recent studies suggest that increasing fluctuations
and concentrations of CO2 disrupt the shoulder season dy-
namics. In Cassou and Cattiaux (2016), a clear example of
this disruption of seasons is provided, whereas an analysis
of the way in which altering greenhouse gas concentration
disrupts the proportion of zonal vs. blocked states of the at-
mospheric dynamics is provided in Faranda et al. (2019a).

https://doi.org/10.5194/npg-29-17-2022 Nonlin. Processes Geophys., 29, 17–35, 2022



24 B. Dubrulle et al.: How many modes do we need to describe climate change?

Figure 4. Seasonal cycle in the von Kármán experiment, imposed by modulating the vertical angular momentum imbalance θ . (a) Mean
vertical angular momentum 〈I 〉 response. (b) Instantaneous vertical angular momentum response for a fixed θ . The z axis is oriented upward,
providing the sign of the vertical angular momentum. The curves represent instantaneous values of I . Lines are coloured according to θ , as
done in (a).

Figure 5. Seasonal cycle in the von Kármán experiment for a case
with high fluctuations. The response of the mean vertical angu-
lar momentum 〈I 〉 to an asymmetry θ is now discontinuous. The
spring/autumn branch is now reduced to the single central point
here, disconnected from the austral and boreal summer branches,
which are respectively defined as the continuous branch extending
to θ→+1 (respectively θ→−1) using notations consistent with
Figs. 3 and 4a. Transitions are only possible from the spring branch
to one of the summer states or between the two summer states.
Three distinct flow configurations are then possible for −0.05≤
θ ≤ 0.05. Their topology is recalled in the insets.

4.4 Spontaneous jumps between circulation states
under a fixed torque difference

Up to now, we focused on circulation changes induced by ex-
ternally imposed changes in impeller rotation rate imbalance
θ : these are forced transitions, similar to the ones caused by
changes in solar radiation on Earth, resulting in seasonal cy-
cles or glacial–interglacial transitions. However, the von Kár-
mán flow is actually even more interesting. Using another
type of forcing, which is actually closer to the forcing con-

ditions of the natural flows on Earth, we also observed in-
teresting spontaneous transitions of the circulation (Marié,
2003; Ravelet, 2005; Saint-Michel et al., 2013). In this sit-
uation we set the torque imbalance applied by the impellers
to the fluid γ = (c1−c2)/(c1+c2), imposing a constant flux
of vertical angular momentum in the experiment. The new
type of dynamics only happens when the level of fluctua-
tions is sufficiently high. It is illustrated in Fig. 6, where we
observe spontaneous transitions between a summer state and
the T state. The transitions can be quasi-periodic (case a) or
very rare (case b), depending on the value of γ . They can
be viewed as a laboratory equivalent of “weather regimes”
(Vautard, 1990), of El Niño events, or of the Heinrich events
of Fig. 1.

These observations show that fast spontaneous transitions
between long-lived states may arise in a complex system
with many degrees of freedom and large fluctuations even
when the external forcing does not vary as a function of
time. Similar transitions could then occur in the atmospheric
and oceanic circulation on Earth should the level of perturba-
tions – our greenhouse gas emissions – become sufficiently
high. Current models employ forcing functions for solar dy-
namics and CO2 concentration that possess a smooth struc-
ture, and bifurcations and sharp transitions in climate models
are avoided. The von Kármán analysis shows however that
small-scale fluctuations are important for the large-scale dy-
namics, because they can trigger sudden transitions in macro-
scopic states.

4.5 The low-dimensional attractor

Despite their apparent complexity, the spontaneous transi-
tions can actually be characterized by low-dimensional ob-
jects called attractors. This is illustrated in Fig. 7, where we
show the joint probability density function (PDF) with si-
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Figure 6. Spontaneous jumps between two circulation configurations observed by measuring the impeller rotation rates for different, fixed,
values of the torque imbalance γ . (a) Quasi-periodic, intermittent case, observed for small γ . (b) Rare events case, observed for a larger
value of γ . The sudden transitions in the rotation frequencies are signatures of changes in the circulation shape. Note the different timescales
(figures adapted from the PhD thesis of Saint-Michel, 2013).

Figure 7. Attractors for different values of the torque imbalance γ . The colours code for the probability p(f1,f2) that the top and bottom
impellers will rotate instantaneously at f1 and f2. They delineate a peculiar shape that is supported by an attractor. As γ is varied, we switch
from a situation where spring is a fixed point (a) to a case where summer is a fixed point (f), with different intermediate situations, where
the system can occasionally escape from its dominant state (b, e) or transition regularly between the two states, following a low-dimensional
attractor (c, d) (figures adapted from the PhD thesis of Saint-Michel, 2013).

multaneously a rotation frequency f1 at the top and f2 at
the bottom impeller. Each subplot of Fig. 7 corresponds to
a different value of the torque imbalance γ . We see that in
each case the joint PDF concentrates on a well-defined set,
which we call the attractor. It can be a round blob, reflecting
the existence of a fixed point in the dynamics (cases a and f)
where the circulation remains either in the spring or summer
state, or a more extended object, corresponding to transitions
between the states. We have checked (Saint-Michel, 2013;
Saint-Michel et al., 2013) that the transitions between states
follow on average the same paths (delineated by the coloured
arrows in sub-panels c and d). Using tools from the dynam-
ical system community, we have been able to prove that all
these observations were consistent with the existence of an

attractor resulting from the coupling of the periodic forcing
of the classical deterministic Duffing attractor (2D) with a
Langevin equation (1D). Moreover, the attractor has a frac-
tal dimension between 3 and 10 (Faranda et al., 2017). This
fractal dimension is very small compared to the number of
degrees of freedom of the system N ∼ 1013. This study has
motivated the development of a minimal model of the effec-
tive dynamics of the mid-latitude jet stream (Faranda et al.,
2019b). This model has been used to explore a range of pos-
sible behaviours beyond those displayed in the available data
that could have appeared in past climates and could appear
again in future climates. Similarly to the model derived by
Faranda et al. (2017) for the von Kármán turbulent flow, the
jet model is based on a coupled map lattice. Each element of
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the lattice reflects the dynamics of the jet at a given longitude.
Stochastic forcing is used to simulate the alternation of cy-
clones and anticyclones, the geography, and the small-scale
dynamics.

The existence of a low-dimensional stochastic attractor in
the experiment illustrates the fact that some degrees of free-
dom are probably not necessary to capture the bifurcations. It
leaves the hope that maybe the essential features of the bifur-
cation will remain even if we decrease the number of degrees
of freedom. So, let us see what happens when we reduce the
number of degrees of freedom by increasing the viscosity,
which is what is done in climate models when turbulent vis-
cosity is introduced.

4.6 Circulation properties in glycerol

We have therefore conducted additional studies in the von
Kármán cell filled with glycerol. This amounts to reduc-
ing the degrees of freedom to ∼ 104, a number 2 orders of
magnitude larger than the dimension of the stochastic attrac-
tor. In this reduced system, we observe again three different
states, one symmetric with respect to the Rπ symmetry and
two states that are exchanged by applying the Rπ symmetry.
They are shown in Fig. 8. They have the same global topol-
ogy as the equivalent states in the full system even though
they differ in details: for instance, the global rotation of the
fluid is significantly more localized in the summer states and
only extends to the vicinity of the rotating impeller.

One can also produce a forced seasonal cycle in this con-
figuration by varying θ and examining the associated vari-
ations of the vertical angular momentum 〈I 〉, as shown in
Fig. 9a. One sees that the seasonal cycle 〈I 〉(θ) is continu-
ous from winter to summer, similarly to the case of the full
system with low fluctuations. The seasonal cycle also looks
almost linear in θ , and smaller differences in the vertical an-
gular momentum 〈I 〉 are seen between summer and winter.

The instantaneous global vertical angular momentum I (t)

(displayed in Fig. 9b) shows very small fluctuations as a
function of time regardless of the impeller frequency imbal-
ance θ : the fluctuations corresponding to the varying daily
temperatures are suppressed. In this reduced system, we
are thus able to capture forced circulation transitions but
not the short-term fluctuations of the observable: in other
words, we are able to conduct “climate” experiments (test-
ing the switching between glacial and interglacial state) but
not weather experiments (reproducing the daily temperature
records) or amplitude of transition between summer and win-
ter.

In a sense, this is quite an achievement: with a much
smaller number of modes than the real system, we are able to
forecast the dynamics of natural systems at a climatic level.
Is this really so? Given that the number of degrees of freedom
is still larger than the dimensions of the stochastic attractor,
we may think that we should also be able to capture the bi-

furcations and the dynamics when switching to more curved
blades and imposing a torque imbalance.

This hope however was shattered by our experiments:
at high viscosity, the multiple-branch region of Fig. 5 dis-
appears (Ravelet, 2005; Saint-Michel, 2013; Saint-Michel
et al., 2013) along with the bifurcations and their associated
dynamics, as shown in Fig. 10. The contrast with the flow
in water – the full system – is striking: not only does the
stochasticity disappear (a reasonable observation if we be-
lieve that stochasticity is induced by the small scales), but
so does the attractor itself. This means that our way of sep-
arating the large and small scales is not suitable for our sys-
tem, as it has suppressed some of the degrees of freedom that
are essential for the large-scale dynamics. Instead, one has to
pick up carefully chosen large, intermediate, and small scales
to represent both the attractor and the transitions between its
branches. The question of how to do it is however still open
and left for future work.

5 Fluctuations and small-scale properties

We have seen in the previous section that the small-scale
velocity fluctuations are essential to get the rich transition
dynamics between metastable states. The usual mental im-
age invoked in such cases is that of an “energy” landscape
(Fig. 11) in which the summer and spring states are repre-
sented by potential wells of different depths. Once the system
is e.g. in the spring state (at position x−), it can only jump
towards the other potential well (at location x+) following
fluctuations exceeding the energy barrier 1U0. This classi-
cal problem of stochastic processes results in an exponen-
tial distribution of escape times from the potential well that
we have observed experimentally (Ravelet, 2005). This kind
of scenario has also recently been observed in the stochasti-
cally forced PLASIM model of climate (Margazoglou et al.,
2021).

How does one get fluctuations of sufficient amplitude to
trigger these transitions? Let us take a closer look at fluctu-
ations in our von Kármán flow. They are shown in Fig. 11a,
from data issued from a direct numerical simulation of our
experiment by Hugues Faller and collaborators, using the
SFEMANS code (Cappanera et al., 2020). Large velocity
fluctuations are primarily observed at two locations: one
close to the “corner” of the experiment (i.e. close to the im-
pellers and the outer wall) and the second at mid-height. The
first location obviously corresponds to the fluctuations in-
duced by the moving boundary conditions which are then
advected by the mean velocity of the spring state of Fig. 3a.
The second location is associated with a strong shear layer
resulting from the counter-rotation of the two main toroidal
cells of the spring state. We then observe, in agreement with
our physical intuition, that larger velocity gradients produce
stronger velocity fluctuations.
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Figure 8. Different states observed in our reduced system – using glycerol – with fewer degrees of freedom. (a) Two-cell symmetric (T)
state. (b) One-cell asymmetric (A) state. (c) One-cell asymmetric (B) state. The out-of-plane azimuthal velocity component uφ is shown in
colour, while the in-plane radial and vertical speeds (ur,uz) are represented by arrows. Fields have been decimated by a factor of 2 for better
visibility. The positions x and z are normalized by the radius of the cylinder R.

Figure 9. Seasonal cycle in the von Kármán experiment for a reduced number of degrees of freedom – using glycerol. (a) Mean angular
response 〈I 〉 to the forcing asymmetry. (b) Instantaneous vertical angular momentum response for a fixed θ coloured according to θ with the
colour choices of (a).

What is the physical process that generates strong ve-
locity gradients in a turbulent flow? Obviously not the vis-
cous dissipation, which has the opposite effect of smearing
out such gradients. In fact, only the non-linear term of the
Navier–Stokes equations (u · ∇)u can produce finer length
scales through triadic-mode interactions. At a given scale,
the intensity of the effect of the non-linear term can be es-
timated through the “local energy transfer” term defined as

5` =∇`(δru)3
`
, where δru= u(x+r)−u(x) is the velocity

increment over a distance r and x` indicates that we aver-
age the distance r over a ball of size ` centred on x. Indeed,
this term provides the contribution of non-linear interactions
to the energy budget and provides the quantity of energy
that is transferred through scales (Dubrulle, 2019). In other
words, the larger 5`, the higher the energy cascade towards
smaller scales and the stronger the final gradient (and veloc-
ity fluctuations) at this location. The quantity 5` is shown

in Fig. 12b): as expected, areas of large velocity fluctuations
correspond to areas of large local energy transfers 5`.

5.1 Scaling exponents and intermittency

Can we quantify the connection between strong velocity fluc-
tuations and large energy transfer events in a more rigorous
way? To do so, we can introduce a local diagnostic quan-
tity that will prove useful in the understanding of the lo-
cal dynamics of the energy transfer. It is the “local scaling
exponent”, defined as h= ln(|δru|)/ ln(r), or equivalently,
|δru| ∼ r

h. This quantity is connected to the mathematical
notion of Hölder continuity, which provides a weaker regu-
larity condition than differentiability. A given velocity field
is Hölder continuous with some exponent h < 1 (i.e. not nec-
essarily differentiable) at small scales if the following holds:

|u(x+ r)−u(x) |< Crh. (1)
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Figure 10. Disappearance of the bifurcation when the Reynolds number or the fluctuations are decreased. (a) Difference between the non-
dimensional torque applied by the turbulence on the upper and lower impellers 1c as a function of θ , shown for various Reynolds numbers.
Blue circles:Re = 980; green squares:Re ∼ 5600; yellow triangles:Re = 11000. The quantity1c is a proxy of 〈I 〉. We see that the transition
between the two summer states is discontinuous for Re > 5600 but becomes continuous at a low Reynolds number (figure adapted from Rav-
elet, 2005). (b) Linking the hysteresis cycle properties to the velocity fluctuations in the von Kármán flow following Thalabard et al. (2015).
Coloured symbols: mean vertical angular momentum 〈I 〉 as a function of the energy of azimuthal fluctuations 〈u2

φ〉− 〈uφ〉
2 measured in our

experiment at θ = 0 for different impeller shapes and Reynolds numbers. The black symbols are 1c at θ = 0 at different Reynolds numbers
and for different propeller shapes. Above 〈u2

φ〉−〈uφ〉
2
= 0.05, two branches of the circulation exist; the lower branch corresponds to austral

summer, while the upper branch corresponds to boreal summer. The spring/autumn branch is unstable. For 〈u2
φ〉− 〈uφ〉

2 < 0.05, the austral
(and boreal) summer branches disappear, and we observe only one possible state of the circulation corresponding to the spring/autumn branch
(picture adapted from Thalabard et al., 2015).

Figure 11. (a) Energy landscape picture of the bifurcation. The von Kármán flow evolves, as would a Brownian particle, between two
potential wells of different depths U(x−) and U(x+) separated by energy barriers 1U0 or 1U +1U0 depending on the nature of the
transition. (b) Multifractal spectrum exponent C(h) of the wavelet velocity increments (equivalent to |δ`u|) computed using Eq. (3) on
numerical simulation data of the von Kármán flow obtained by Hugues Faller. The data points are given by blue circles, and the blue line
is a parabolic fit extrapolating towards C(h)= 3 which cannot be accessed with our limited data set. For comparison, we have also put the
multifractal spectrum exponent computed from the scaling properties of the local energy transfer (green diamonds) in the same numerical
simulation. Finally, we have added to the graph multifractal exponents derived from scaling exponents measured by Iyer et al. (2020) through
the moments of the signed longitudinal (red squares) and transverse (yellow triangle) velocity increments (figure adapted from Faller et al.,
2021).
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Figure 12. (a) Instantaneous magnitude of velocity fluctuations. (b) Local energy transfers in the von Kármán flow (pictures courtesy of
Hugues Faller).

We see that Hölder continuity uses the velocity increment
δru as a building block. This is interesting, as a classical
result by Kolmogorov states that under stationarity and ho-
mogeneity conditions, the mean energy flux of a solution of
Navier–Stokes equations is constant in the inertial range

〈5`〉 = −ε, (2)

where ε is the global energy dissipation. Integrating this over
scale, one gets 〈(δu(x,`))3〉 = −(4/3)ε` for ` in the iner-
tial range. This is called the Kolmogorov 4/3 law. If signed
and unsigned (with absolute values) values of velocity incre-
ments were equivalent and the turbulence were fully homo-
geneous, this would suggest that h∼ 1/3 for scales in the
inertial range: turbulence would be a monofractal, with ex-
ponent h= 1/3.

However, these two hypotheses are violated. First, it is
clear that unsigned moments converge much more rapidly
and easily than signed moments, as the latter are prone to
cancellation effects and sensitive to large fluctuations of pos-
itive or negative values. Due to these phenomena, signed
moments are sensitive to possible sub-leading correction to
scaling and are avoided by taking the absolute value. In that
sense, the local scaling exponent we define is more robust
but maybe less sensitive to subtle scaling effects like oscil-
latory scaling behaviour. In the von Kármán flow, we have
checked that indeed 〈(δu(x,`))3〉 ∼ ` while 〈|δu(x,`)|3〉 ∼
`0.8 (Faller et al., 2021). Second, we have observed that at
small scale, the turbulence is strongly inhomogeneous (Faller
et al., 2021), so that it is not clear that a single exponent can
be sufficient to describe the flow.

While we cannot consider the 4/3 law to be an exact con-
straint pointing to h= 1/3, we can still find a relic of such
a value using the scale dynamics of turbulence. Indeed, from
dimensional analysis, it is possible to show that the local en-
ergy transfer scales like 5` ∼ `3h−1 (Dubrulle, 2019) (see
however Schertzer and Lovejoy (2011) for multifractal tran-

sitions allowing deviations from such dimensional scaling).
So, when h > 1/3,5` decreases with scale and tends to zero,
while for h < 1/3, 5` increases with decreasing scales and
is able to provide larger and larger fluctuations. The case
h= 1/3 is special and corresponds to a case where the local
energy flux is scale invariant. This is the situation that was
assumed in the original self-similar theory of turbulence pro-
posed by Kolmogorov. This theory leads to an energy spec-
trum scaling as k−5/3, yet we see from Fig. 12b that the local
energy transfer term is highly variable in space, contrasting
with the assumptions of homogeneity and isotropy made by
Kolmogorov. This means that we have to forget about global
homogeneity or scale invariance for turbulent flows, which
would provide us with a single value for the scaling expo-
nent, and rather consider the possibility that there may be a
whole bunch of interesting local scaling exponents. To cap-
ture them, we must find a way to describe them using local
scaling laws.

5.2 The multifractal spectrum

The corresponding mathematical description can be built us-
ing the large deviation theory (Eyink, 2007–2008) that allows
us to describe the probability of finding an exponent h at a
given place or time in the flow as

P
{
| ln(δ`u|)= h ln(`/L)

}
∝ exp

[
ln
(
`

L

)
C(h)

]
=

(
`

L

)C(h)
, (3)

where C(h) is the rate function of h, also called the multi-
fractal spectrum. Originally, C(h) was interpreted as the sta-
tistical codimension of the set where the velocity increment
at a distance ` scales like `h (see Frisch and Parisi, 1985,
and Schertzer and Lovejoy, 2011, and references therein).
In that interpretation, it is natural that C(h) be less than
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the space dimension (C(h)≤ 3). In the large-deviation in-
terpretation, however, one can get arbitrarily large C(h) cor-
responding to arbitrarily rare events. The codimension inter-
pretation nevertheless allows us to single out the exponents
where C(h) > 3 (possibly C(h)→∞), meaning that the
corresponding events are rarer than point-distributed events,
which indeed corresponds to exponents with a very low prob-
ability of occurrence. More generally, the large-deviation
property enables us to make a direct connection between the
multifractal spectrum and the scaling exponents of the nth
moment of |δ`u| as

〈|δ`u|
n
〉 ∼ `ζ(n),

ζ(n)=minh(nh+C(h)). (4)

This is a Legendre transform. In that description, the value
of h at which C(h) is minimum corresponds to the exponent
with the highest probability, hmp. This exponent is usually
very easy to measure, as it corresponds to an exponent that is
frequently hit.

We have computed the multifractal spectrum in the von
Kármán flow using both experimental measurements and nu-
merical simulations. The result is shown in Fig. 11b. We
see that the minimum of C(h) is attained for hmp = 0.35,
very close to but slightly larger than the 1/3 Kolmogorov
exponent. The fact that it is not exactly equal to 1/3 is a
hallmark of intermittency, as can be understood by coming
back to the 4/3 law. This law is strictly valid only for the
signed exponent, but let us assume for the moment that it
gives a good approximation for our absolute value moment,
meaning ζ(3)= 1. Given the Legendre property (4), this im-
poses that we must have C(h)≤ 1− 3h, which means that
at h= 1/3, C(h) is positive. In the codimension interpreta-
tion, this means that h= 1/3 is true everywhere but for an
ensemble of dimension 3−C(h). The only way it can be
true everywhere is if C(1/3)= 0, which means that C(h) is
a delta function centred on 1/3 (a pure fractal). Indeed, con-
sider a simple model in which the multifractal spectrum is
parabolic around its minimum C(h)= (h−hmp)

2/2b. This
is usually true near a minimum, and assuming that it extends
further away was first done by Kolmogorov (1962), result-
ing in the log-normal model of turbulence. If we now impose
that ζ(3)= 1 in this model, we get hmp = 1/3+3b/2, so that
the only free parameter is b, the scale parameter. Therefore,
in this model, the only value for which hmp = 1/3 is b = 0,
corresponding to a delta function for C(h) and then to a pure
fractal.

If this simple model were valid in the von Kármán flow,
our measured value of hmp would correspond to b = 0.011,
meaning a rather mild intermittency. Given that the condi-
tion ζ(3)= 1 does not apply exactly for the absolute moment
in our case, a more precise measure of intermittency can be
made by performing a parabolic fit to our data, resulting in a
larger value b ∼ 0.035± 0.01. We stress here that the inter-
mittency property is not in contradiction with the flux conser-

vation of Eq. (2): we have indeed checked that 〈5`〉 is scale
independent in the inertial range and equal to the global en-
ergy dissipation. Locally, there is however no reason for the
local flux to be scale independent, as it can hit regions with
h 6= 1/3, with non-zero probability (intermittency).

At all the places where h < 1/3 (and we see that there are
quite a few), the local energy transfer increases with decreas-
ing scales. This means that there are many places in a turbu-
lent flow where large fluctuations can build up. The smallest
exponent we were able to measure is h≈ 0.17. We may also
compute the multifractal spectrum using the scaling laws of
the local energy transfers:

〈|5`|
n
〉 ∼ `τ(n),

τ (n)∼minh(n(3h− 1)+C(h)). (5)

Using the local energy transfers, we are actually able to ob-
serve a smaller local scaling exponent very close to 0. These
values can be compared to values obtained by computing the
multifractal spectrum via application of the Legendre trans-
form to scaling exponents computed in recent high Reynolds
number numerical simulations of Iyer et al. (2020) for both
longitudinal δuL

= δu · `/`2 and transverse δuT
= δu× `/`2

velocity increments. One sees that the longitudinal velocity
increments also provide a minimal value around h≈ 0.16,
while the minimal value for transverse velocity increments
is h≈ 0. The smallest exponents, if they exist, will become
increasingly rare, and we probably need to wait an order of
magnitude longer time to be able to have a chance to observe
them. To get an idea of what could be the smallest expo-
nent we may observe, we can extrapolate our measurements
with the log-normal model. The parabolic extrapolation to
the value where C(h)= 3 shows that the smallest exponent
we may be able to find in the flow with a non-zero probabil-
ity is hmin '−0.2. For such a negative value of h, the local
energy transfer increases sharply towards the smaller scales
like 5` ∼ `−1.6. Does it increase without limit? Is there any
process to stop it?

5.3 The regularizing scale

Indeed, at the smallest scales of the flow, viscous effects curb
the growth of the local energy transfer. The typical scale
below which viscous effects become effective can be esti-
mated from the dimensional analysis arguments of Paladin
and Vulpiani (1987). Their argument is that the local en-
ergy budget of a turbulent flow at a given scale ` includes a
sink term due to viscous dissipation besides the local energy
transfer we mentioned in the previous sections (for a com-
plete expression of the energy budget, see Dubrulle, 2019).

The sink term reads 5ν = ν(δru)2
`

and scales like
5`ν ∼ ν`

2h−2 at locations where δru∼ rh. The viscous term
therefore balances the local energy transfer term at a scale
ηh ∼ ν

1/(1+h). This scale thus appears as a fluctuating cut-
off scale which depends on the scaling exponent and there-
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fore on x. This is a generalization of the Kolmogorov scale
ηK ∼ ν

3/4. Below ηh, the sink term due to dissipation be-
comes dominant in the energy budget, the local energy trans-
fer vanishes, and the flow becomes regular, whereas this reg-
ularization occurs everywhere at ηK in the K41 model.

On Earth, strong velocity gradients develop in regions as-
sociated with the planetary boundary layer and may result in
large-scale extreme weather events: tornadoes, hurricanes, or
supercells. Besides viscosity, there are other types of regular-
izing mechanisms for such phenomena. The energy can in-
deed be dissipated directly on solid surfaces with sometimes
dramatic consequences for human beings, animals, and veg-
etation. Such a process is however akin to a “large-scale fric-
tion” that is not present in our experiment. Extreme weather
phenomena are still difficult to forecast. To capture them, is
it enough to refine our everyday weather forecasts at a reso-
lution of∼ 1 km (the scale of convective flows) (Hohenegger
et al., 2015)? This is the topic of the next section.

5.4 The computational nightmare continues

We have seen in Sect. 4 that we need to include the velocity
fluctuations of the von Kármán turbulent flow down to their
smallest scales to accurately reflect the large-scale properties
and dynamics of its seasonal cycle. For any given local ex-
ponent h < 1/3, the local energy transfer increases with de-
creasing scales down to `= ηh. Therefore, we have to make
sure that our modelling resolution δ (the size of our grid) is
below ηh for any h present in the flow. Otherwise, we may
underestimate the magnitude of the fluctuations by a factor
(δηh)

h. A stringent criterion to make sure all small scales are
properly taken into account would be to choose δ equal to
ηh=hmin , where hmin is either the smallest measured exponent
observed in our simulation (optimistic view) or the smallest
estimated exponent, computed using e.g. parabolic extrapo-
lation (pessimistic view). In the first case, this gives hmin ∼ 0,
resulting in ηh=hmin ∼ 1/Re, smaller than the Kolmogorov
scale by a factor Re−1/4. In the pessimistic view, hmin ∼

−0.2, resulting in ηh=hmin ∼ Re
−5/4
∼ ηKRe

−1/2. This pes-
simistic choice actually increases the number of degrees of
freedom required to accurately model turbulent flows by
a factor Re3/2 compared to our initial estimate based on
the Newtonian viscosity of the fluid and the K41 turbulent
model. We then reach N ∼ 1023 degrees of freedom (the
Avogadro number) in our water von Kármán experiment or
N ∼ 1040 for the atmosphere.

6 Conclusions

We seem to have understood why climate models work in
the first place: the large-scale topology and externally forced
transitions do not depend very much on the value of the vis-
cosity and may in fact be described with tools from statistical
mechanics (Thalabard et al., 2015) involving only a few hun-

dred to thousand modes that can easily be captured by present
climate models. However, when it comes to understanding
whether present climate models have enough degrees of free-
dom to capture global bifurcations, we have reached contrast-
ing conclusions using our laboratory experiment.

A key result from this experiment is that the large scales of
even highly turbulent flows are not restricted to having purely
relaxational dynamics, decaying monotonically to an “en-
ergy landscape pit” from which escape is impossible, the tur-
bulent fluctuations “randomizing away” any escape attempt.
The forced rotation rate experiments (Sect. 4.3) show that
this is definitely not the case: when brought to the symmet-
ric forcing θ = 0 situation, the flow remembers with seem-
ingly infinite memory how it has been prepared and remains
in its “A” or “B” state indefinitely (the “T” state is peculiar
in that its decay time diverges when θ→ 0, but the transi-
tion seems a priori possible). In this respect, though the level
of turbulent fluctuations is very high, the large scales of the
flow are as deterministic as a light switch. This behaviour is
in fact well known in aerodynamics, where it is encountered
in the “stalling” transition of airfoils (Sarraf et al., 2005). The
fixed flux experiments (Sect. 4.4) are even more spectacular
in that they show that the large scales of the flow can have
non-trivial temporal dynamics, with an elaborate scenery of
fast transitions between long-lived states and with residence
times in the states either sharply distributed around a finite
value or exponentially distributed with a long characteristic
time of decay.

The fact that this time evolution of the large-scale topology
of the flow can be described by a low-dimensional attractor,
corresponding to a few degrees of freedom, is very encour-
aging and justifies the search for procedures for cutting down
the number of degrees of freedom. However, the destruction
of the coherent large-scale dynamics by the large increase
in the viscosity in the glycerol experiments shows that a too
trivial procedure might preclude a sufficient representation
of potentially vitally important large-scale Earth system pro-
cesses. Indeed, our study suggests that a good practice to ap-
proach complexity is to use both simple conceptual models
such as the one presented in Faranda et al. (2017, 2019b) as
well as complex models (e.g. direct numerical simulations,
DNS, or large eddy simulations, LES, for the von Kármán
flow and full numerical integration of primitive equations for
the climate). While simple models can quickly provide an
overview of the bifurcation landscape of a system, fine mod-
els can be used to explore targeted regions of the phase space
where interesting phenomena produce e.g. extreme dissipa-
tion events in the von Kármán flow or convective events in
climate simulations.

We have seen that these fluctuations are generated at very
small scales by a concentration of local energy transfer end-
ing up in point-like quasi singularities, with large fluctuations
over small scales. These small scales are really small, even
smaller than the Kolmogorov scale ηK. Resolving these small
scales using direct numerical simulations comes at a colossal
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computational cost, out of reach of current (and future) com-
puting facilities. So, the problem of small-scale parametriza-
tion is in fact even more acute than we thought. From what
we have learned, one thing we must take care of is to devise
a model that is able to reproduce and include the large veloc-
ity fluctuations observed at very small scales in experimen-
tal turbulent flows without explicitly resolving them. This is
clearly the next challenge in climate modelling.
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