A spectral dominance approach to large random matrices - Archive ouverte HAL
Article Dans Une Revue Journal de Mathématiques Pures et Appliquées Année : 2022

A spectral dominance approach to large random matrices

Résumé

This paper presents a novel approach to characterize the dynamics of the limit spectrum of large random matrices. This approach is based upon the notion we call "spectral dominance". In particular, we show that the limit spectral measure can be determined as the derivative of the unique viscosity solution of a partial integro-differential equation. This also allows to make general and "short" proofs for the convergence problem. We treat the cases of Dyson Brownian motions, Wishart processes and present a general class of models for which this characterization holds.
Fichier principal
Vignette du fichier
spectral_dominance.pdf (350.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03228966 , version 2 (18-05-2021)
hal-03228966 , version 1 (12-10-2023)

Identifiants

Citer

Charles Bertucci, Mérouane Debbah, Jean-Michel Lasry, Pierre-Louis Lions. A spectral dominance approach to large random matrices. Journal de Mathématiques Pures et Appliquées, 2022, ⟨10.1016/j.matpur.2022.06.001⟩. ⟨hal-03228966v2⟩
310 Consultations
202 Téléchargements

Altmetric

Partager

More