Rational Lax Matrices from Antidominantly Shifted Extended Yangians: BCD Types - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematical Physics Année : 2022

Rational Lax Matrices from Antidominantly Shifted Extended Yangians: BCD Types

Résumé

Generalizing Frassek et al. (Adv. Math. 401, 108283 (2022). https://doi.org/10.1016/j.aim.2022.108283), we construct a family of SO(2r), Sp(2r),  $SO(2r\!+\!1)$ rational Lax matrices $T_D(z)$, polynomial in the spectral parameter z, parametrized by $\Lambda ^+$-valued divisors D on ${\mathbb {P}}^1$. To this end, we provide the RTT realization of the antidominantly shifted extended Drinfeld Yangians of ${\mathfrak {g}}=\mathfrak {so}_{2r}, \mathfrak {sp}_{2r}, \mathfrak {so}_{2r+1}$, and of their coproduct homomorphisms.

Dates et versions

hal-03224754 , version 1 (11-05-2021)

Identifiants

Citer

Rouven Frassek, Alexander Tsymbaliuk. Rational Lax Matrices from Antidominantly Shifted Extended Yangians: BCD Types. Communications in Mathematical Physics, 2022, 392 (2), pp.545-619. ⟨10.1007/s00220-022-04345-6⟩. ⟨hal-03224754⟩
54 Consultations
0 Téléchargements

Altmetric

Partager

More