An Extended Jump Function Benchmark for the Analysis of Randomized Search Heuristics - Archive ouverte HAL
Article Dans Une Revue Algorithmica Année : 2024

An Extended Jump Function Benchmark for the Analysis of Randomized Search Heuristics

Résumé

Jump functions are the most-studied non-unimodal benchmark in the theory of randomized search heuristics, in particular, evolutionary algorithms (EAs). They have significantly improved our understanding of how EAs escape from local optima. However, their particular structure -- to leave the local optimum one can only jump directly to the global optimum -- raises the question of how representative such results are. For this reason, we propose an extended class $\text{Jump}_{k,\delta}$ of jump functions that contain a valley of low fitness of width $\delta$ starting at distance $k$ from the global optimum. We prove that several previous results extend to this more general class: for all $k \le \frac{n^{1/3}}{\ln{n}}$ and $\delta < k$, the optimal mutation rate for the $(1+1)$~EA is $\frac{\delta}{n}$, and the fast $(1+1)$~EA runs faster than the classical $(1+1)$~EA by a factor super-exponential in $\delta$. However, we also observe that some known results do not generalize: the randomized local search algorithm with stagnation detection, which is faster than the fast $(1+1)$~EA by a factor polynomial in $k$ on $\text{Jump}_k$, is slower by a factor polynomial in $n$ on some $\text{Jump}_{k,\delta}$ instances. Computationally, the new class allows experiments with wider fitness valleys, especially when they lie further away from the global optimum.
Fichier principal
Vignette du fichier
Bambury_Bultel_Doerr__Extended_Jump_Function__arxiv_v3__2022.pdf (3.79 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03220178 , version 1 (07-05-2021)
hal-03220178 , version 2 (27-11-2021)
hal-03220178 , version 3 (05-10-2024)

Identifiants

Citer

Henry Bambury, Antoine Bultel, Benjamin Doerr. An Extended Jump Function Benchmark for the Analysis of Randomized Search Heuristics. Algorithmica, 2024, 86 (1), pp.1-32. ⟨10.1007/s00453-022-00977-1⟩. ⟨hal-03220178v3⟩
202 Consultations
105 Téléchargements

Altmetric

Partager

More