Evolution of plasmonic nanostructures under ultra-low-energy ion bombardment - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Applied Surface Science Année : 2021

Evolution of plasmonic nanostructures under ultra-low-energy ion bombardment

Résumé

Metal nanostructures supported on a dielectric substrate possess unique plasmonic properties that are highly dependent on their morphologies. We show that such nanostructures can be modified upon exposure to an ultralow-energy ion-beam bombardment (< 100 eV) near the sputtering threshold of the metal. This plasma treatment can be easily implemented in a vacuum deposition chamber and allows the achievement of morphologies, and therefore optical properties, that are difficult to achieve otherwise by physical vapor deposition. We present the effects obtained (i) on self-organized Ag nanoparticles with unidirectional orientation and bimodal distribution, and (ii) on Ag layers in the form of percolated, quasi-continuous or island thin films. Our results show that the plasmonic dichroism of self-organized assemblies can be tuned thanks to the preferential sputtering of the smaller particles associated with gradual erosion of the larger ones. Ion-induced modifications of percolated or quasi-continuous films lead to the formation of isolated tiny particles with areal densities smaller than 500 μm − 2. In both cases, the duration of the ion bombardment makes it possible to finely control the desired structural and plasmonic modifications.
Fichier principal
Vignette du fichier
Simonot_et_al_06112020 (unmarked).pdf (10.34 Mo) Télécharger le fichier
Simonot_et_al_to_Applied_Surface_Science_supplement_25082020.pdf (10.64 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03219947 , version 1 (28-05-2021)

Identifiants

Citer

Lionel Simonot, Florian Chabanais, Sophie Rousselet, Frédéric Pailloux, Sophie Camelio, et al.. Evolution of plasmonic nanostructures under ultra-low-energy ion bombardment. Applied Surface Science, 2021, 544, pp.148672. ⟨10.1016/j.apsusc.2020.148672⟩. ⟨hal-03219947⟩
48 Consultations
10 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More