Partial Optimal Transport with Applications on Positive-Unlabeled Learning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Partial Optimal Transport with Applications on Positive-Unlabeled Learning

Laetitia Chapel
  • Fonction : Auteur
  • PersonId : 1098088
Mokhtar Z Alaya
Gilles Gasso

Résumé

Classical optimal transport problem seeks a transportation map that preserves the total mass between two probability distributions, requiring their masses to be equal. This may be too restrictive in some applications such as color or shape matching, since the distributions may have arbitrary masses and/or only a fraction of the total mass has to be transported. In this paper, we address the partial Wasserstein and Gromov-Wasserstein problems and propose exact algorithms to solve them. We showcase the new formulation in a positive-unlabeled (PU) learning application. To the best of our knowledge, this is the first application of optimal transport in this context and we first highlight that partial Wasserstein-based metrics prove effective in usual PU learning settings. We then demonstrate that partial Gromov-Wasserstein metrics are efficient in scenarii in which the samples from the positive and the unlabeled datasets come from different domains or have different features.
Fichier principal
Vignette du fichier
NeurIPS-2020-partial-optimal-tranport-with-applications-on-positive-unlabeled-learning-Paper.pdf (352.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03219281 , version 1 (06-05-2021)

Identifiants

  • HAL Id : hal-03219281 , version 1

Citer

Laetitia Chapel, Mokhtar Z Alaya, Gilles Gasso. Partial Optimal Transport with Applications on Positive-Unlabeled Learning. Advances in Neural Information Processing Systems 33 (NeurIPS 2020), Dec 2020, Online, France. ⟨hal-03219281⟩
116 Consultations
176 Téléchargements

Partager

More