Novel Version of PageRank, CheiRank and 2DRank for Wikipedia in Multilingual Network Using Social Impact
Résumé
Nowadays, information describing navigation behaviour of internet users are used in several fields, e-commerce, economy, sociology and data science. Such information can be extracted from different knowledge bases, including business-oriented ones. In this paper, we propose a new model for the PageRank, CheiRank and 2DRank algorithm based on the use of clickstream and pageviews data in the google matrix construction. We used data from Wikipedia and analysed links between over 20 million articles from 11 language editions. We extracted over 1.4 billion source-destination pairs of articles from SQL dumps and more than 700 million pairs from XML dumps. Additionally, we unified the pairs based on the analysis of redirect pages and removed all duplicates. Moreover, we also created a bigger network of Wikipedia articles based on all considered language versions and obtained multilingual measures. Based on real data, we discussed the difference between standard PageRank, Cheirank, 2DRank and measures obtained based on our approach in separate languages and multilingual network of Wikipedia.