Biological Models of Reinforcement Learning - Archive ouverte HAL
Article Dans Une Revue KI - Künstliche Intelligenz Année : 2009

Biological Models of Reinforcement Learning

Julien Vitay
Jérémy Fix

Résumé

This review focuses on biological issues of reinforcement learning. Since the influential discovery of W. Schultz of an analogy between the reward prediction error signal of the temporal difference algorithm and the firing pattern of some dopaminergic neurons in the midbrain during classical conditioning, biological models have emerged that use computational reinforcement learning concepts to explain adaptative behavior. In particular, the basal ganglia has been proposed to implement among other things reinforcement learning for action selection, motor control or working memory. We discuss to which extent the analogy between the temporal difference algorithm and the firing of dopamine cells can be considered as valid. Our review then focuses on the basal ganglia, their anatomy and key computational properties as demonstrated by three recent, influential models.
Fichier principal
Vignette du fichier
article.pdf (220.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03217566 , version 1 (10-05-2021)

Identifiants

  • HAL Id : hal-03217566 , version 1

Citer

Julien Vitay, Jérémy Fix, Frederik Beuth, Henning Schroll, Fred H Hamker. Biological Models of Reinforcement Learning. KI - Künstliche Intelligenz, In press. ⟨hal-03217566⟩
103 Consultations
46 Téléchargements

Partager

More