Context-Awareness and Viewer Behavior Prediction in Social-TV Recommender Systems: Survey and Challenges
Résumé
This paper surveys the landscape of actual personalized TV recommender systems, and introduces challenges on context-awareness and viewer behavior prediction applied to social TV-recommender systems. Real data related to the viewers behaviors and the social context have been picked up in real-time through a social TV platform. We highlighted the future benefits of analyzing viewer behavior and exploiting the social influence on viewers’s preferences to improve recommendation in respect with TV contents’ change.