Context-Awareness and Viewer Behavior Prediction in Social-TV Recommender Systems: Survey and Challenges - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

Context-Awareness and Viewer Behavior Prediction in Social-TV Recommender Systems: Survey and Challenges

Résumé

This paper surveys the landscape of actual personalized TV recommender systems, and introduces challenges on context-awareness and viewer behavior prediction applied to social TV-recommender systems. Real data related to the viewers behaviors and the social context have been picked up in real-time through a social TV platform. We highlighted the future benefits of analyzing viewer behavior and exploiting the social influence on viewers’s preferences to improve recommendation in respect with TV contents’ change.
Fichier non déposé

Dates et versions

hal-03213975 , version 1 (30-04-2021)

Identifiants

Citer

Meriam Bambia, Rim Faiz, Mohand Boughanem. Context-Awareness and Viewer Behavior Prediction in Social-TV Recommender Systems: Survey and Challenges. 19th East-European Conference on Advances in Databases and Information Systems (ADBIS 2015), LIAS/ISAE-ENSMA - Laboratory of Computer Science and Automatic Control for Systems, Sep 2015, Poitiers, France. pp.52--59, ⟨10.1007/978-3-319-23201-0_7⟩. ⟨hal-03213975⟩
29 Consultations
0 Téléchargements

Altmetric

Partager

More