Ensemble extreme learning machine based equalizers for OFDM systems
Résumé
Extreme Learning Machine (ELM) technology has started gaining interest in the channel estimation and equalization aspects of wireless communications systems. This is due to its fast training and global optimization capabilities that might allow the ELM-based receivers to be deployed in an online mode while facing the channel scenario at hand. However, ELM still needs a relatively large amount of training samples, thus causing important losses in spectral resources. In this work, we make use of the ensemble learning theory to propose different ensemble learning-based ELM equalizers that need much less spectral resources, while achieving better performance accuracy. Also, we verify the robustness of our proposed equalizers within different communication settings and channel scenarios by conducting different Monte Carlo simulations.
Origine | Fichiers produits par l'(les) auteur(s) |
---|