Constraints on warm dark matter from UV luminosity functions of high-z galaxies with Bayesian model comparison - Archive ouverte HAL
Article Dans Une Revue Monthly Notices of the Royal Astronomical Society Année : 2021

Constraints on warm dark matter from UV luminosity functions of high-z galaxies with Bayesian model comparison

Anton Rudakovskyi
  • Fonction : Auteur
Andrei Mesinger
Denys Savchenko
  • Fonction : Auteur
Nicolas Gillet

Résumé

The number density of small dark matter (DM) haloes hosting faint high-redshift galaxies is sensitive to the DM free-streaming properties. However, constraining these DM properties is complicated by degeneracies with the uncertain baryonic physics governing star formation. In this work, we use a flexible astrophysical model and a Bayesian inference framework to analyse ultraviolet (UV) luminosity functions (LFs) at z = 6–8. We vary the complexity of the astrophysical galaxy model (single versus double power law for the stellar – halo mass relation) as well as the matter power spectrum [cold DM versus thermal relic warm DM (WDM)], comparing their Bayesian evidences. Adopting a conservatively wide prior range for the WDM particle mass, we show that the UV LFs at z = 6–8 only weakly favour cold DM over WDM. We find that particle masses of ≲ 2 keV are rejected at a 95 per cent credible level in all models that have a WDM-like power spectrum cutoff. This bound should increase to ∼2.5 keV with the James Webb Space Telescope (JWST).
Fichier principal
Vignette du fichier
stab2333.pdf (1.29 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03210353 , version 1 (04-05-2023)

Identifiants

Citer

Anton Rudakovskyi, Andrei Mesinger, Denys Savchenko, Nicolas Gillet. Constraints on warm dark matter from UV luminosity functions of high-z galaxies with Bayesian model comparison. Monthly Notices of the Royal Astronomical Society, 2021, 507 (2), pp.3046-3056. ⟨10.1093/mnras/stab2333⟩. ⟨hal-03210353⟩
44 Consultations
37 Téléchargements

Altmetric

Partager

More