Congruences modulo powers of 5 for the rank parity function - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 2021

Congruences modulo powers of 5 for the rank parity function

Dandan Chen
  • Fonction : Auteur
Rong Chen
  • Fonction : Auteur
Frank Garvan
  • Fonction : Auteur

Résumé

It is well known that Ramanujan conjectured congruences modulo powers of 5, 7 and 11 for the partition function. These were subsequently proved by Watson (1938) and Atkin (1967). In 2009 Choi, Kang, and Lovejoy proved congruences modulo powers of 5 for the crank parity function. The generating function for the rank parity function is f (q), which is the first example of a mock theta function that Ramanujan mentioned in his last letter to Hardy. We prove congruences modulo powers of 5 for the rank parity function.
Fichier principal
Vignette du fichier
43Article03.pdf (389.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03208204 , version 1 (26-04-2021)

Identifiants

Citer

Dandan Chen, Rong Chen, Frank Garvan. Congruences modulo powers of 5 for the rank parity function. Hardy-Ramanujan Journal, 2021, Volume 43 - Special Commemorative volume in honour of Srinivasa Ramanujan - 2020, pp.24-45. ⟨10.46298/hrj.2021.7424⟩. ⟨hal-03208204⟩
34 Consultations
629 Téléchargements

Altmetric

Partager

More