Partition-theoretic formulas for arithmetic densities, II - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 2021

Partition-theoretic formulas for arithmetic densities, II

Ken Ono
  • Fonction : Auteur
Robert Schneider

Résumé

In earlier work generalizing a 1977 theorem of Alladi, the authors proved a partition-theoretic formula to compute arithmetic densities of certain subsets of the positive integers N as limiting values of q-series as q → ζ a root of unity (instead of using the usual Dirichlet series to compute densities), replacing multiplicative structures of N by analogous structures in the integer partitions P. In recent work, Wang obtains a wide generalization of Alladi's original theorem, in which arithmetic densities of subsets of prime numbers are computed as values of Dirichlet series arising from Dirichlet convolutions. Here the authors prove that Wang's extension has a partition-theoretic analogue as well, yielding new q-series density formulas for any subset of N. To do so, we outline a theory of q-series density calculations from first principles, based on a statistic we call the "q-density" of a given subset. This theory in turn yields infinite families of further formulas for arithmetic densities.
Fichier principal
Vignette du fichier
43Article01.pdf (366.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03208042 , version 1 (26-04-2021)

Identifiants

Citer

Ken Ono, Robert Schneider, Ian Wagner. Partition-theoretic formulas for arithmetic densities, II. Hardy-Ramanujan Journal, 2021, Volume 43 - Special Commemorative volume in honour of Srinivasa Ramanujan - 2020, pp.1-16. ⟨10.46298/hrj.2021.7428⟩. ⟨hal-03208042⟩
44 Consultations
737 Téléchargements

Altmetric

Partager

More