Learning Boolean controls in regulated metabolic networks: a case-study - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Learning Boolean controls in regulated metabolic networks: a case-study

Résumé

Many techniques have been developed to infer Boolean regulations from a prior knowledge network and experimental data. Existing methods are able to reverse-engineer Boolean regulations for transcriptional and signaling networks, but they fail to infer regulations that control metabolic networks. This paper provides a formalisation of the inference of regulations for metabolic networks as a satisfiability problem with two levels of quantifiers, and introduces a method based on Answer Set Programming to solve this problem on a small-scale example.
Fichier principal
Vignette du fichier
cmsb2021.pdf (1.22 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03207589 , version 1 (25-04-2021)
hal-03207589 , version 2 (06-05-2021)
hal-03207589 , version 3 (02-09-2021)

Identifiants

Citer

Kerian Thuillier, Caroline Baroukh, Alexander Bockmayr, Ludovic Cottret, Loïc Paulevé, et al.. Learning Boolean controls in regulated metabolic networks: a case-study. CMSB 2021 - 19th International Conference on Computational Methods in Systems Biology, Sep 2021, Bordeaux, France. pp.159-180, ⟨10.1007/978-3-030-85633-5_10⟩. ⟨hal-03207589v3⟩
327 Consultations
378 Téléchargements

Altmetric

Partager

More