Time reversal of diffusion processes under a finite entropy condition - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques Année : 2023

Time reversal of diffusion processes under a finite entropy condition

Résumé

Motivated by entropic optimal transport, time reversal of diffusion processes is revisited. An integration by parts formula is derived for the carré du champ of a Markov process in an abstract space. It leads to a time reversal formula for a wide class of diffusion processes in Rn possibly with singular drifts, extending the already known results in this domain. The proof of the integration by parts formula relies on stochastic derivatives. Then, this formula is applied to compute the semimartingale characteristics of the time-reversed P* of a diffusion measure P provided that the relative entropy of P with respect to another diffusion measure R is finite, and the semimartingale characteristics of the time-reversed R* are known (for instance when the reference path measure R is reversible). As an illustration of the robustness of this method, the integration by parts formula is also employed to derive a time-reversal formula for a random walk on a graph.
Fichier principal
Vignette du fichier
CCGL-TR-diffusion-IHP-revised.pdf (539.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03206478 , version 1 (23-04-2021)
hal-03206478 , version 2 (02-09-2022)

Identifiants

Citer

Patrick Cattiaux, Giovanni Conforti, Ivan Gentil, Christian Léonard. Time reversal of diffusion processes under a finite entropy condition. Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2023, 59 (4), pp.1844-1881. ⟨10.1214/22-AIHP1320⟩. ⟨hal-03206478v2⟩
277 Consultations
559 Téléchargements

Altmetric

Partager

More