Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages - Archive ouverte HAL
Article Dans Une Revue Digital Finance Année : 2020

Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages

Thomas Renault

Résumé

We use a large dataset of one million messages sent on the microblogging platform StockTwits to evaluate the performance of a wide range of preprocessing methods and machine learning algorithms for sentiment analysis in finance. We find that adding bigrams and emojis significantly improve sentiment classification performance. However, more complex and time-consuming machine learning methods, such as random forests or neural networks, do not improve the accuracy of the classification. We also provide empirical evidence that the preprocessing method and the size of the dataset have a strong impact on the correlation between investor sentiment and stock returns. While investor sentiment and stock returns are highly correlated, we do not find that investor sentiment derived from messages sent on social media helps in predicting large capitalization stocks return at a daily frequency.
Fichier non déposé

Dates et versions

hal-03205149 , version 1 (22-04-2021)

Identifiants

Citer

Thomas Renault. Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages. Digital Finance, 2020, 2 (1-2), pp.1-13. ⟨10.1007/s42521-019-00014-x⟩. ⟨hal-03205149⟩
146 Consultations
0 Téléchargements

Altmetric

Partager

More