The Number of Optimal Matchings for Euclidean Assignment on the Line - Archive ouverte HAL
Article Dans Une Revue Journal of Statistical Physics Année : 2021

The Number of Optimal Matchings for Euclidean Assignment on the Line

Résumé

Abstract We consider the Random Euclidean Assignment Problem in dimension $$d=1$$ d = 1 , with linear cost function. In this version of the problem, in general, there is a large degeneracy of the ground state, i.e. there are many different optimal matchings (say, $$\sim \exp (S_N)$$ ∼ exp ( S N ) at size N ). We characterize all possible optimal matchings of a given instance of the problem, and we give a simple product formula for their number. Then, we study the probability distribution of $$S_N$$ S N (the zero-temperature entropy of the model), in the uniform random ensemble. We find that, for large N , $$S_N \sim \frac{1}{2} N \log N + N s + {\mathcal {O}}\left( \log N \right) $$ S N ∼ 1 2 N log N + N s + O log N , where s is a random variable whose distribution p ( s ) does not depend on N . We give expressions for the moments of p ( s ), both from a formulation as a Brownian process, and via singularity analysis of the generating functions associated to $$S_N$$ S N . The latter approach provides a combinatorial framework that allows to compute an asymptotic expansion to arbitrary order in 1/ N for the mean and the variance of $$S_N$$ S N .
Fichier principal
Vignette du fichier
2101.04926_forHal.pdf (596.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03204820 , version 1 (21-04-2021)

Identifiants

Citer

Sergio Caracciolo, Vittorio Erba, Andrea Sportiello. The Number of Optimal Matchings for Euclidean Assignment on the Line. Journal of Statistical Physics, 2021, 183 (1), ⟨10.1007/s10955-021-02741-1⟩. ⟨hal-03204820⟩
30 Consultations
46 Téléchargements

Altmetric

Partager

More