Microlocal analysis of singular measures - Archive ouverte HAL
Article Dans Une Revue Mathematische Zeitschrift Année : 2022

Microlocal analysis of singular measures

Résumé

The purpose of this article is to investigate the structure of singular measures from a micro-local perspective. We introduce a notion of L 1-regularity wave front set for scalar and vectorial distributions. Our main result is a proper microlocal characterisation of the support of the singular part of temperate Radon measures and of their polar functions at these points. We deduce a sharp L 1 elliptic regularity result which appears to be new even for scalar measures. We also deduce several consequences including extensions of the results in [9] giving constraints on the polar function at singular points for measures constrained by a PDE. Finally, we also illustrate the interest of this micro-local approach with a result of propagation of singularities for constrained measures.
Fichier principal
Vignette du fichier
Banica-Burq.pdf (462.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03202769 , version 1 (20-04-2021)

Identifiants

  • HAL Id : hal-03202769 , version 1

Citer

Valeria Banica, Nicolas Burq. Microlocal analysis of singular measures. Mathematische Zeitschrift, In press. ⟨hal-03202769⟩
44 Consultations
78 Téléchargements

Partager

More