Data driven uncertainty quantification in macroscopic traffic flow models - Archive ouverte HAL
Article Dans Une Revue Advances in Computational Mathematics Année : 2022

Data driven uncertainty quantification in macroscopic traffic flow models

Résumé

We propose a Bayesian approach for parameter uncertainty quantification in macroscopic traffic flow models from cross-sectional data. A bias term is introduced and modeled as a Gaussian process to account for the traffic flow models limitations. We validate the results comparing the error metrics of both first and second order models, showing that second order models globally perform better in reconstructing traffic quantities of interest.
Fichier principal
Vignette du fichier
UCQTFM.pdf (2 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03202124 , version 1 (19-04-2021)
hal-03202124 , version 2 (17-11-2021)

Identifiants

  • HAL Id : hal-03202124 , version 2

Citer

Alexandra Würth, Mickael Binois, Paola Goatin, Simone Göttlich. Data driven uncertainty quantification in macroscopic traffic flow models. Advances in Computational Mathematics, 2022, 48. ⟨hal-03202124v2⟩
642 Consultations
360 Téléchargements

Partager

More